Implantation of engineered adipocytes suppresses tumor progression in cancer models

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hai P. Nguyen, Kelly An, Yusuke Ito, Bhushan N. Kharbikar, Rory Sheng, Breanna Paredes, Elizabeth Murray, Kimberly Pham, Michael Bruck, Xujia Zhou, Cassandra Biellak, Aki Ushiki, Mai Nobuhara, Sarah L. Fong, Daniel A. Bernards, Filipa Lynce, Deborah A. Dillon, Mark Jesus M. Magbanua, Laura A. Huppert, Heinz Hammerlindl, Jace Anton Klein, Luis Valdiviez, Oliver Fiehn, Laura Esserman, Tejal A. Desai, Sook Wah Yee, Jennifer M. Rosenbluth, Nadav Ahituv
{"title":"Implantation of engineered adipocytes suppresses tumor progression in cancer models","authors":"Hai P. Nguyen, Kelly An, Yusuke Ito, Bhushan N. Kharbikar, Rory Sheng, Breanna Paredes, Elizabeth Murray, Kimberly Pham, Michael Bruck, Xujia Zhou, Cassandra Biellak, Aki Ushiki, Mai Nobuhara, Sarah L. Fong, Daniel A. Bernards, Filipa Lynce, Deborah A. Dillon, Mark Jesus M. Magbanua, Laura A. Huppert, Heinz Hammerlindl, Jace Anton Klein, Luis Valdiviez, Oliver Fiehn, Laura Esserman, Tejal A. Desai, Sook Wah Yee, Jennifer M. Rosenbluth, Nadav Ahituv","doi":"10.1038/s41587-024-02551-2","DOIUrl":null,"url":null,"abstract":"<p>Tumors exhibit an increased ability to obtain and metabolize nutrients. Here, we implant engineered adipocytes that outcompete tumors for nutrients and show that they can substantially reduce cancer progression, a technology termed adipose manipulation transplantation (AMT). Adipocytes engineered to use increased amounts of glucose and fatty acids by upregulating <i>UCP1</i> were placed alongside cancer cells or xenografts, leading to significant cancer suppression. Transplanting modulated adipose organoids in pancreatic or breast cancer genetic mouse models suppressed their growth and decreased angiogenesis and hypoxia. Co-culturing patient-derived engineered adipocytes with tumor organoids from dissected human breast cancers significantly suppressed cancer progression and proliferation. In addition, cancer growth was impaired by inducing engineered adipose organoids to outcompete tumors using tetracycline or placing them in an integrated cell-scaffold delivery platform and implanting them next to the tumor. Finally, we show that upregulating <i>UPP1</i> in adipose organoids can outcompete a uridine-dependent pancreatic ductal adenocarcinoma for uridine and suppress its growth, demonstrating the potential customization of AMT.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"132 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02551-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tumors exhibit an increased ability to obtain and metabolize nutrients. Here, we implant engineered adipocytes that outcompete tumors for nutrients and show that they can substantially reduce cancer progression, a technology termed adipose manipulation transplantation (AMT). Adipocytes engineered to use increased amounts of glucose and fatty acids by upregulating UCP1 were placed alongside cancer cells or xenografts, leading to significant cancer suppression. Transplanting modulated adipose organoids in pancreatic or breast cancer genetic mouse models suppressed their growth and decreased angiogenesis and hypoxia. Co-culturing patient-derived engineered adipocytes with tumor organoids from dissected human breast cancers significantly suppressed cancer progression and proliferation. In addition, cancer growth was impaired by inducing engineered adipose organoids to outcompete tumors using tetracycline or placing them in an integrated cell-scaffold delivery platform and implanting them next to the tumor. Finally, we show that upregulating UPP1 in adipose organoids can outcompete a uridine-dependent pancreatic ductal adenocarcinoma for uridine and suppress its growth, demonstrating the potential customization of AMT.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信