Ion Irradiation-Induced Coordinatively Unsaturated Zn Sites for Enhanced CO Hydrogenation

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei-Peng Shao, Yunjian Ling, Hongru Peng, Jie Luo, Yunjun Cao, Yihua Ran, Jun Cai, Jiayu Lv, Bowen Zhu, Yun Liu, Yuxiang Chen, Na Li, Feng Jiao, Huiqi Chen, Yifeng Zhu, Xin Ou, Yuemin Wang, Christof Wöll, Qiang Fu, Xiulian Pan, Peijun Hu, Wei-Xue Li, Zhi Liu, Xinhe Bao, Fan Yang
{"title":"Ion Irradiation-Induced Coordinatively Unsaturated Zn Sites for Enhanced CO Hydrogenation","authors":"Wei-Peng Shao, Yunjian Ling, Hongru Peng, Jie Luo, Yunjun Cao, Yihua Ran, Jun Cai, Jiayu Lv, Bowen Zhu, Yun Liu, Yuxiang Chen, Na Li, Feng Jiao, Huiqi Chen, Yifeng Zhu, Xin Ou, Yuemin Wang, Christof Wöll, Qiang Fu, Xiulian Pan, Peijun Hu, Wei-Xue Li, Zhi Liu, Xinhe Bao, Fan Yang","doi":"10.1021/jacs.4c13234","DOIUrl":null,"url":null,"abstract":"Defect engineering critically influences metal oxide catalysis, yet controlling coordinatively unsaturated metal sites remains challenging due to their inherent instability under reaction conditions. Here, we demonstrate that high-flux argon ion (Ar<sup>+</sup>) irradiation above recrystallization temperatures generated well-defined coordinatively unsaturated Zn (CUZ) sites on ZnO(101̅0) surfaces that exhibited enhanced stability and activity for CO hydrogenation. Combining low-temperature scanning probe microscopy, ambient pressure X-ray photoelectron spectroscopy, and surface–ligand infrared spectroscopy with density functional theory calculations, we identified &lt;12̅10&gt; step edges exposing CUZ sites as the dominant active sites. These sites facilitate hydrogen-assisted CO dissociation through a mechanism distinct from formate-mediated pathways on stoichiometric ZnO. The ion-irradiation approach effectively addressed instability of Zn species, a major problem in ZnO catalysis, enabling stable performance in syngas conversion when combined with zeolites. Our atomic scale investigation provided spectroscopic fingerprints for active sites on the ZnO catalyst and insights into the structure–activity relationships of ZnO for CO hydrogenation. Our approach for engineering thermally stable defect sites in oxide catalysts provided opportunities for rational catalyst design beyond traditional preparation methods.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"30 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13234","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Defect engineering critically influences metal oxide catalysis, yet controlling coordinatively unsaturated metal sites remains challenging due to their inherent instability under reaction conditions. Here, we demonstrate that high-flux argon ion (Ar+) irradiation above recrystallization temperatures generated well-defined coordinatively unsaturated Zn (CUZ) sites on ZnO(101̅0) surfaces that exhibited enhanced stability and activity for CO hydrogenation. Combining low-temperature scanning probe microscopy, ambient pressure X-ray photoelectron spectroscopy, and surface–ligand infrared spectroscopy with density functional theory calculations, we identified <12̅10> step edges exposing CUZ sites as the dominant active sites. These sites facilitate hydrogen-assisted CO dissociation through a mechanism distinct from formate-mediated pathways on stoichiometric ZnO. The ion-irradiation approach effectively addressed instability of Zn species, a major problem in ZnO catalysis, enabling stable performance in syngas conversion when combined with zeolites. Our atomic scale investigation provided spectroscopic fingerprints for active sites on the ZnO catalyst and insights into the structure–activity relationships of ZnO for CO hydrogenation. Our approach for engineering thermally stable defect sites in oxide catalysts provided opportunities for rational catalyst design beyond traditional preparation methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信