Muhamed Amin, Jean-Michel Hartmann, Amit K. Samanta, Jochen Küpper
{"title":"Laser-Induced Alignment of Nanoparticles and Macromolecules for Coherent-Diffractive-Imaging Applications","authors":"Muhamed Amin, Jean-Michel Hartmann, Amit K. Samanta, Jochen Küpper","doi":"10.1021/jacs.4c15679","DOIUrl":null,"url":null,"abstract":"Laser-induced alignment of particles and molecules was long envisioned to support three-dimensional structure determination using “single-molecule diffraction” with X-ray free-electron lasers [PRL 92, 198102 (2004)]. However, the alignment of isolated macromolecules has not yet been demonstrated also because quantitative modeling is very expensive. We computationally demonstrated that the alignment of nanorods and proteins is possible with a standard laser technology. We performed a comprehensive analysis on the dependence of the degree of alignment on molecular properties and experimental details, e.g., particle temperature and laser-pulse energy. Considering the polarizability anisotropy of about 150,000 proteins, our analysis revealed that most of these proteins can be aligned using realistic experimental parameters.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"24 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15679","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser-induced alignment of particles and molecules was long envisioned to support three-dimensional structure determination using “single-molecule diffraction” with X-ray free-electron lasers [PRL 92, 198102 (2004)]. However, the alignment of isolated macromolecules has not yet been demonstrated also because quantitative modeling is very expensive. We computationally demonstrated that the alignment of nanorods and proteins is possible with a standard laser technology. We performed a comprehensive analysis on the dependence of the degree of alignment on molecular properties and experimental details, e.g., particle temperature and laser-pulse energy. Considering the polarizability anisotropy of about 150,000 proteins, our analysis revealed that most of these proteins can be aligned using realistic experimental parameters.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.