Laser-Induced Alignment of Nanoparticles and Macromolecules for Coherent-Diffractive-Imaging Applications

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Muhamed Amin, Jean-Michel Hartmann, Amit K. Samanta, Jochen Küpper
{"title":"Laser-Induced Alignment of Nanoparticles and Macromolecules for Coherent-Diffractive-Imaging Applications","authors":"Muhamed Amin, Jean-Michel Hartmann, Amit K. Samanta, Jochen Küpper","doi":"10.1021/jacs.4c15679","DOIUrl":null,"url":null,"abstract":"Laser-induced alignment of particles and molecules was long envisioned to support three-dimensional structure determination using “single-molecule diffraction” with X-ray free-electron lasers [PRL 92, 198102 (2004)]. However, the alignment of isolated macromolecules has not yet been demonstrated also because quantitative modeling is very expensive. We computationally demonstrated that the alignment of nanorods and proteins is possible with a standard laser technology. We performed a comprehensive analysis on the dependence of the degree of alignment on molecular properties and experimental details, e.g., particle temperature and laser-pulse energy. Considering the polarizability anisotropy of about 150,000 proteins, our analysis revealed that most of these proteins can be aligned using realistic experimental parameters.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"24 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15679","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-induced alignment of particles and molecules was long envisioned to support three-dimensional structure determination using “single-molecule diffraction” with X-ray free-electron lasers [PRL 92, 198102 (2004)]. However, the alignment of isolated macromolecules has not yet been demonstrated also because quantitative modeling is very expensive. We computationally demonstrated that the alignment of nanorods and proteins is possible with a standard laser technology. We performed a comprehensive analysis on the dependence of the degree of alignment on molecular properties and experimental details, e.g., particle temperature and laser-pulse energy. Considering the polarizability anisotropy of about 150,000 proteins, our analysis revealed that most of these proteins can be aligned using realistic experimental parameters.

Abstract Image

激光诱导纳米粒子和大分子对准在相干衍射成像中的应用
长期以来,人们一直设想激光诱导粒子和分子的排列,以支持使用x射线自由电子激光的“单分子衍射”来确定三维结构[PRL 92, 198102(2004)]。然而,由于定量建模非常昂贵,分离大分子的排列尚未得到证实。我们通过计算证明,纳米棒和蛋白质的排列是可能的标准激光技术。我们对分子性质和实验细节(如粒子温度和激光脉冲能量)对取向程度的依赖性进行了全面分析。考虑到大约150,000种蛋白质的极化各向异性,我们的分析表明,大多数这些蛋白质可以使用现实的实验参数对齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信