{"title":"Multimodal lung cancer theranostics via manganese phosphate/quercetin particle","authors":"Chong Qiu, Fei Xia, Qingchao Tu, Huan Tang, Yinan Liu, Hongda Liu, Chen Wang, HaiLu Yao, Linying Zhong, Yuanfeng Fu, Pengbo Guo, Weiqi Chen, Xinyu Zhou, Li Zou, Licheng Gan, Jiawei Yan, Yichong Hou, Junzhe Zhang, Huanhuan Pang, Yuqing Meng, Qiaoli Shi, Guang Han, Xijun Wang, Jigang Wang","doi":"10.1186/s12943-025-02242-9","DOIUrl":null,"url":null,"abstract":"The diagnosis and treatment of non-small cell lung cancer in clinical settings face serious challenges, particularly due to the lack of integration between the two processes, which limit real-time adjustments in treatment plans based on the patient’s condition and drive-up treatment costs. Here, we present a multifunctional pH-sensitive core-shell nanoparticle containing quercetin (QCT), termed AHA@MnP/QCT NPs, designed for the simultaneous diagnosis and treatment of non-small cell lung cancer. Mechanistic studies indicated that QCT and Mn2+ exhibited excellent peroxidase-like (POD-like) activity, catalysing the conversion of endogenous hydrogen peroxide into highly toxic hydroxyl radicals through a Fenton-like reaction, depleting glutathione (GSH), promoting reactive oxygen species (ROS) generation in mitochondria and endoplasmic reticulum, and inducing ferroptosis. Additionally, Mn2+ could activate the cGAS-STING signalling pathway and promote the maturation of dendritic cells and infiltration of activated T cells, thus inducing tumor immunogenic cell death (ICD). Furthermore, it exhibited effective T2-weighted MRI enhancement for tumor imaging, making them valuable for clinical diagnosis. In vitro and in vivo experiments demonstrated that AHA@MnP/QCT NPs enabled non-invasive imaging and tumor treatment, which presented a one-stone-for-two-birds strategy for combining tumor diagnosis and treatment, with broad potential for clinical application in non-small cell lung cancer therapy. ","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"22 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02242-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The diagnosis and treatment of non-small cell lung cancer in clinical settings face serious challenges, particularly due to the lack of integration between the two processes, which limit real-time adjustments in treatment plans based on the patient’s condition and drive-up treatment costs. Here, we present a multifunctional pH-sensitive core-shell nanoparticle containing quercetin (QCT), termed AHA@MnP/QCT NPs, designed for the simultaneous diagnosis and treatment of non-small cell lung cancer. Mechanistic studies indicated that QCT and Mn2+ exhibited excellent peroxidase-like (POD-like) activity, catalysing the conversion of endogenous hydrogen peroxide into highly toxic hydroxyl radicals through a Fenton-like reaction, depleting glutathione (GSH), promoting reactive oxygen species (ROS) generation in mitochondria and endoplasmic reticulum, and inducing ferroptosis. Additionally, Mn2+ could activate the cGAS-STING signalling pathway and promote the maturation of dendritic cells and infiltration of activated T cells, thus inducing tumor immunogenic cell death (ICD). Furthermore, it exhibited effective T2-weighted MRI enhancement for tumor imaging, making them valuable for clinical diagnosis. In vitro and in vivo experiments demonstrated that AHA@MnP/QCT NPs enabled non-invasive imaging and tumor treatment, which presented a one-stone-for-two-birds strategy for combining tumor diagnosis and treatment, with broad potential for clinical application in non-small cell lung cancer therapy.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.