GridFL: A 3D-Grid-based Federated Learning framework

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jiagao Wu, Yudong Jiang, Zhouli Fan, Linfeng Liu
{"title":"GridFL: A 3D-Grid-based Federated Learning framework","authors":"Jiagao Wu,&nbsp;Yudong Jiang,&nbsp;Zhouli Fan,&nbsp;Linfeng Liu","doi":"10.1016/j.jnca.2025.104115","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL) is an emerging distributed machine learning framework that enables a large number of devices to train machine learning models collaboratively without sharing local data. Despite the extensive potential of FL, in practical scenarios, different characteristics of clients lead to the presence of different heterogeneity in resources, data distribution, and data quantity, which poses a challenge for the training of FL. To address this problem, in this paper, we first conduct an exhaustive experimental study on all three kinds of heterogeneity in FL and provide insights into the specific impact of heterogeneity on training performance. Subsequently, we propose GridFL, a 3D-grid-based FL framework, where the three kinds of heterogeneity are defined as three dimensions (i.e., dimensions of training speed, data distribution, and data quantity) independently, and all clients in FL training are assigned to corresponding cells of the 3D grid by a gridding algorithm based on K-means clustering. In addition, we propose a grid scheduling algorithm with a dynamic selection strategy, which can select an optimal subset of clients to participate in FL training per round by adopting different strategies for different dimensions and cells. The simulation experiments show that GridFL exhibits superior performance in heterogeneous environments and outperforms several related state-of-the-art FL algorithms. Thus, the effectiveness of the proposed algorithms and strategies in GridFL are verified.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"236 ","pages":"Article 104115"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804525000128","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) is an emerging distributed machine learning framework that enables a large number of devices to train machine learning models collaboratively without sharing local data. Despite the extensive potential of FL, in practical scenarios, different characteristics of clients lead to the presence of different heterogeneity in resources, data distribution, and data quantity, which poses a challenge for the training of FL. To address this problem, in this paper, we first conduct an exhaustive experimental study on all three kinds of heterogeneity in FL and provide insights into the specific impact of heterogeneity on training performance. Subsequently, we propose GridFL, a 3D-grid-based FL framework, where the three kinds of heterogeneity are defined as three dimensions (i.e., dimensions of training speed, data distribution, and data quantity) independently, and all clients in FL training are assigned to corresponding cells of the 3D grid by a gridding algorithm based on K-means clustering. In addition, we propose a grid scheduling algorithm with a dynamic selection strategy, which can select an optimal subset of clients to participate in FL training per round by adopting different strategies for different dimensions and cells. The simulation experiments show that GridFL exhibits superior performance in heterogeneous environments and outperforms several related state-of-the-art FL algorithms. Thus, the effectiveness of the proposed algorithms and strategies in GridFL are verified.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信