Tryptophan metabolism reprogramming contributes to the prothrombotic milieu in mice and humans infected with SARS-CoV-2.

Saravanan Subramaniam, Marc Arthur Napoleon, Saran Lotfollahzadeh, Mohamed Hassan Kamal, Helena Kurniawan, Murad Elsadawi, Devin Kenney, Florian Douam, Markus Bosmann, Stephen Whelan, Howard Cabral, Eric J Burks, Grace Zhao, Vijay Kolachalama, Katya Ravid, Vipul Chitalia
{"title":"Tryptophan metabolism reprogramming contributes to the prothrombotic milieu in mice and humans infected with SARS-CoV-2.","authors":"Saravanan Subramaniam, Marc Arthur Napoleon, Saran Lotfollahzadeh, Mohamed Hassan Kamal, Helena Kurniawan, Murad Elsadawi, Devin Kenney, Florian Douam, Markus Bosmann, Stephen Whelan, Howard Cabral, Eric J Burks, Grace Zhao, Vijay Kolachalama, Katya Ravid, Vipul Chitalia","doi":"10.1101/2025.01.17.633602","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 infection disturbs the coagulation balance in the blood, triggering thrombosis and contributing to organ failure. The role of prothrombotic metabolites in COVID-19-associated coagulopathy remains elusive. Leveraging K18-hACE2 mice infected with SARS-CoV-2, we observed higher levels of the tryptophan metabolite, kynurenine, compared to controls. SARS CoV-2 infected mice showed a significant upregulation of enzymes controlling Kynurenine biogenesis, such as indoleamine 2,3-dioxygenase (IDO-1) and tryptophan 2,3-dioxygenase levels in kidneys and liver, respectively, as well as changes in the enzymes involved in kynurenine catabolism, including kynurenine monooxygenase and kynurinase. Consistent with the agonistic role of these metabolites in Aryl Hydrocarbon Receptor (AHR) signaling, AHR activation and its downstream mediator, tissue factor (TF), a highly potent procoagulant factor, was observed in endothelial cells (ECs) of lungs and kidneys of infected mice. These findings were validated in humans, where compared to controls, sera of COVID-19 patients showed increased levels of Kynurenine, kynurenic acid, anthranilic acid, and quinolinic acid. Activation of the AHR-TF axis was noted in the kidneys and lungs of COVID-19 patients, and COVID-19 sera showed higher IDO-1 activity than controls. Levels of Kyn in COVID-19 patients correlated strongly with the TF inducing activity of COVID-19 sera on ECs. A specific IDO-1 inhibitor or AHR inhibitor separately or in combination suppressed COVID-19 sera-induced TF activity in ECs. Together, we identified IDO-1 as upregulated by SARS-CoV-2 infection, resulting in augmented Kyn and its prothrombotic catabolites, thereby suggesting the Kyn AHR-TF axis as possibly a new diagnostic and/or therapeutic target.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785031/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.17.633602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SARS-CoV-2 infection disturbs the coagulation balance in the blood, triggering thrombosis and contributing to organ failure. The role of prothrombotic metabolites in COVID-19-associated coagulopathy remains elusive. Leveraging K18-hACE2 mice infected with SARS-CoV-2, we observed higher levels of the tryptophan metabolite, kynurenine, compared to controls. SARS CoV-2 infected mice showed a significant upregulation of enzymes controlling Kynurenine biogenesis, such as indoleamine 2,3-dioxygenase (IDO-1) and tryptophan 2,3-dioxygenase levels in kidneys and liver, respectively, as well as changes in the enzymes involved in kynurenine catabolism, including kynurenine monooxygenase and kynurinase. Consistent with the agonistic role of these metabolites in Aryl Hydrocarbon Receptor (AHR) signaling, AHR activation and its downstream mediator, tissue factor (TF), a highly potent procoagulant factor, was observed in endothelial cells (ECs) of lungs and kidneys of infected mice. These findings were validated in humans, where compared to controls, sera of COVID-19 patients showed increased levels of Kynurenine, kynurenic acid, anthranilic acid, and quinolinic acid. Activation of the AHR-TF axis was noted in the kidneys and lungs of COVID-19 patients, and COVID-19 sera showed higher IDO-1 activity than controls. Levels of Kyn in COVID-19 patients correlated strongly with the TF inducing activity of COVID-19 sera on ECs. A specific IDO-1 inhibitor or AHR inhibitor separately or in combination suppressed COVID-19 sera-induced TF activity in ECs. Together, we identified IDO-1 as upregulated by SARS-CoV-2 infection, resulting in augmented Kyn and its prothrombotic catabolites, thereby suggesting the Kyn AHR-TF axis as possibly a new diagnostic and/or therapeutic target.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信