Engineering microalgal cell wall-anchored proteins using GP1 PPSPX motifs and releasing with intein-mediated fusion.

Kalisa Kang, Évellin do Espirito Santo, Crisandra Jade Diaz, Stephen Mayfield, João Vitor Dutra Molino
{"title":"Engineering microalgal cell wall-anchored proteins using GP1 PPSPX motifs and releasing with intein-mediated fusion.","authors":"Kalisa Kang, Évellin do Espirito Santo, Crisandra Jade Diaz, Stephen Mayfield, João Vitor Dutra Molino","doi":"10.1101/2025.01.23.634604","DOIUrl":null,"url":null,"abstract":"<p><p>Harnessing and controlling the localization of recombinant proteins is critical for advancing applications in synthetic biology, industrial biotechnology, and drug delivery. This study explores protein anchoring and controlled release in <i>Chlamydomonas reinhardtii</i> , providing innovative tools for these fields. Using truncated variants of the GP1 glycoprotein fused to the plastic-degrading enzyme PHL7, we identified the PPSPX motif as essential for anchoring proteins to the cell wall. Constructs with increased PPSPX content exhibited reduced secretion but improved anchoring, pinpointing the potential anchor-signal sites of GP1 and highlighting the distinct roles of these motifs in protein localization. Building on the anchoring capabilities established with these glycomodules, we also demonstrated a controlled release system using a pH-sensitive intein derived from RecA from <i>Mycobacterium tuberculosis</i> . This intein efficiently cleaved and released PHL7 and mCherry that was fused to GP1 under acidic conditions, enabling precise temporal and environmental control. At pH 5.5, fluorescence kinetics demonstrated significant mCherry release from the pJPW4mCherry construct within 4 hours. In contrast, release was minimal under pH 8.0 conditions and negligible for the pJPW2mCherry (W2) control, irrespective of the pH. Additionally, bands on the Western blot at the expected size of mCherry also showed its efficient release from the mCherry::intein::GP1 fusion protein at pH 5.5. Conversely, at pH 8.0, no bands were detected. This anchor-release approach offers significant potential for drug delivery, biocatalysis, and environmental monitoring applications. By integrating glycomodules and pH-sensitive inteins, this study establishes a versatile framework for optimizing protein localization and release in <i>C. reinhardtii</i> , with broad implications for proteomics, biofilm engineering, and scalable therapeutic delivery systems.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785195/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.23.634604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing and controlling the localization of recombinant proteins is critical for advancing applications in synthetic biology, industrial biotechnology, and drug delivery. This study explores protein anchoring and controlled release in Chlamydomonas reinhardtii , providing innovative tools for these fields. Using truncated variants of the GP1 glycoprotein fused to the plastic-degrading enzyme PHL7, we identified the PPSPX motif as essential for anchoring proteins to the cell wall. Constructs with increased PPSPX content exhibited reduced secretion but improved anchoring, pinpointing the potential anchor-signal sites of GP1 and highlighting the distinct roles of these motifs in protein localization. Building on the anchoring capabilities established with these glycomodules, we also demonstrated a controlled release system using a pH-sensitive intein derived from RecA from Mycobacterium tuberculosis . This intein efficiently cleaved and released PHL7 and mCherry that was fused to GP1 under acidic conditions, enabling precise temporal and environmental control. At pH 5.5, fluorescence kinetics demonstrated significant mCherry release from the pJPW4mCherry construct within 4 hours. In contrast, release was minimal under pH 8.0 conditions and negligible for the pJPW2mCherry (W2) control, irrespective of the pH. Additionally, bands on the Western blot at the expected size of mCherry also showed its efficient release from the mCherry::intein::GP1 fusion protein at pH 5.5. Conversely, at pH 8.0, no bands were detected. This anchor-release approach offers significant potential for drug delivery, biocatalysis, and environmental monitoring applications. By integrating glycomodules and pH-sensitive inteins, this study establishes a versatile framework for optimizing protein localization and release in C. reinhardtii , with broad implications for proteomics, biofilm engineering, and scalable therapeutic delivery systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信