MitoEdit: a pipeline for optimizing mtDNA base editing and predicting bystander effects.

Devansh Shah, Kelly McCastlain, Ti-Cheng Chang, Gang Wu, Mondira Kundu
{"title":"MitoEdit: a pipeline for optimizing mtDNA base editing and predicting bystander effects.","authors":"Devansh Shah, Kelly McCastlain, Ti-Cheng Chang, Gang Wu, Mondira Kundu","doi":"10.1101/2025.01.22.634390","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Human mitochondrial DNA (mtDNA) mutations are causally implicated in maternally inherited mitochondrial respiratory disorders; however, the role of somatic mtDNA mutations in both late-onset chronic diseases and cancer remains less clear. Although recent advances in mtDNA base editing technology have the potential to model and characterize many of these mutations, current editing approaches are complicated by the potential for multiple unintentional edits (bystanders) that are only identifiable through empirical 'trial and error', thereby sacrificing valuable time and effort towards suboptimal construct development.</p><p><strong>Results: </strong>We developed MitoEdit, a novel tool that incorporates empirical base editor patterns to facilitate identification of optimal target windows and potential bystander edits. MitoEdit allows users to input DNA sequences in a text-based format, specifying the target base position and its desired modification. The program generates a list of candidate target windows with a predicted number of bystander edits and their functional impact, along with flanking nucleotide sequences designed to bind TALE (transcription activator-like effectors) array proteins. <i>In silico</i> evaluations indicate that MitoEdit can predict the majority of bystander edits, thereby reducing the number of constructs that need to be tested empirically. To the best of our knowledge, MitoEdit is the first tool to automate prediction of base edits.</p><p><strong>Availability and implementation: </strong>MitoEdit is freely available at Kundu Lab GitHub ( https://github.com/Kundu-Lab/mitoedit ).</p><p><strong>Contact: </strong>Corresponding email: Gang.Wu@stjude.org ; Mondira.Kundu@stjude.org.</p><p><strong>Supplementary information: </strong>Supplementary data are available at <i>Bioinformatics</i> online.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.22.634390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Human mitochondrial DNA (mtDNA) mutations are causally implicated in maternally inherited mitochondrial respiratory disorders; however, the role of somatic mtDNA mutations in both late-onset chronic diseases and cancer remains less clear. Although recent advances in mtDNA base editing technology have the potential to model and characterize many of these mutations, current editing approaches are complicated by the potential for multiple unintentional edits (bystanders) that are only identifiable through empirical 'trial and error', thereby sacrificing valuable time and effort towards suboptimal construct development.

Results: We developed MitoEdit, a novel tool that incorporates empirical base editor patterns to facilitate identification of optimal target windows and potential bystander edits. MitoEdit allows users to input DNA sequences in a text-based format, specifying the target base position and its desired modification. The program generates a list of candidate target windows with a predicted number of bystander edits and their functional impact, along with flanking nucleotide sequences designed to bind TALE (transcription activator-like effectors) array proteins. In silico evaluations indicate that MitoEdit can predict the majority of bystander edits, thereby reducing the number of constructs that need to be tested empirically. To the best of our knowledge, MitoEdit is the first tool to automate prediction of base edits.

Availability and implementation: MitoEdit is freely available at Kundu Lab GitHub ( https://github.com/Kundu-Lab/mitoedit ).

Contact: Corresponding email: Gang.Wu@stjude.org ; Mondira.Kundu@stjude.org.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信