Microstructure of the residual corticofugal projection from primary motor cortex in chronic stroke.

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-01-15 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf016
Saket Bikmal, Fang Liu, Chan Hong Moon, Michael A Urbin
{"title":"Microstructure of the residual corticofugal projection from primary motor cortex in chronic stroke.","authors":"Saket Bikmal, Fang Liu, Chan Hong Moon, Michael A Urbin","doi":"10.1093/braincomms/fcaf016","DOIUrl":null,"url":null,"abstract":"<p><p>Movement dysfunction after stroke is largely due to the inability of cortical motor neurons to activate spinal motor neurons via transmission of descending motor commands along the corticofugal projection from the primary motor cortex. Pathophysiological processes that ensue following injury have mostly resolved and white matter volume within the remodelled tract has mostly stabilized by the chronic stage many months to years after symptom onset. Where along the cranial course of the residual corticofugal projection white matter microstructure explains potential to activate muscles weakened by stroke at this stage is still not well understood. Here, diffusion spectrum imaging was used to reconstruct the descending corticofugal projection and quantify its microstructure in stroke survivors (<i>n</i> = 25) with longstanding hand impairment (7.7 ± 6.5 years). Portions of the residual tract overlapping with abnormalities on structural images were defined as the 'Overlap' compartment, and portions above and below this compartment were defined as 'Rostral' and 'Caudal' compartments, respectively. Maximal precision grip force and size of motor-evoked potentials elicited by transcranial magnetic stimulation were used to quantify activation of paretic hand muscles. Coherence of fibre anisotropy and directional diffusivities between tracts in either cerebral hemisphere was reduced in stroke survivors relative to neurologically-intact controls, with most abnormal asymmetries observed in the 'Overlap' compartment. While differences in fibre anisotropy and diffusivity between residual and intact tracts were detected most prominently in the 'Overlap' compartment, the overall magnitude of unrestricted diffusion within the 'Caudal' compartment was most closely linked to paretic muscle activation. The ability of cortical motor neurons to access spinal motor neuron pools long after stroke onset is therefore associated with microstructural integrity in portions of the residual corticofugal projection subject to secondary degeneration. These findings expand knowledge on white matter adaptation in response to neurological injury and may inform applications that seek to reverse brain pathology long after stroke onset when movement dysfunction tends to persist.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf016"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Movement dysfunction after stroke is largely due to the inability of cortical motor neurons to activate spinal motor neurons via transmission of descending motor commands along the corticofugal projection from the primary motor cortex. Pathophysiological processes that ensue following injury have mostly resolved and white matter volume within the remodelled tract has mostly stabilized by the chronic stage many months to years after symptom onset. Where along the cranial course of the residual corticofugal projection white matter microstructure explains potential to activate muscles weakened by stroke at this stage is still not well understood. Here, diffusion spectrum imaging was used to reconstruct the descending corticofugal projection and quantify its microstructure in stroke survivors (n = 25) with longstanding hand impairment (7.7 ± 6.5 years). Portions of the residual tract overlapping with abnormalities on structural images were defined as the 'Overlap' compartment, and portions above and below this compartment were defined as 'Rostral' and 'Caudal' compartments, respectively. Maximal precision grip force and size of motor-evoked potentials elicited by transcranial magnetic stimulation were used to quantify activation of paretic hand muscles. Coherence of fibre anisotropy and directional diffusivities between tracts in either cerebral hemisphere was reduced in stroke survivors relative to neurologically-intact controls, with most abnormal asymmetries observed in the 'Overlap' compartment. While differences in fibre anisotropy and diffusivity between residual and intact tracts were detected most prominently in the 'Overlap' compartment, the overall magnitude of unrestricted diffusion within the 'Caudal' compartment was most closely linked to paretic muscle activation. The ability of cortical motor neurons to access spinal motor neuron pools long after stroke onset is therefore associated with microstructural integrity in portions of the residual corticofugal projection subject to secondary degeneration. These findings expand knowledge on white matter adaptation in response to neurological injury and may inform applications that seek to reverse brain pathology long after stroke onset when movement dysfunction tends to persist.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信