Sphae: an automated toolkit for predicting phage therapy candidates from sequencing data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-01-17 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf004
Bhavya Papudeshi, Michael J Roach, Vijini Mallawaarachchi, George Bouras, Susanna R Grigson, Sarah K Giles, Clarice M Harker, Abbey L K Hutton, Anita Tarasenko, Laura K Inglis, Alejandro A Vega, Cole Souza, Lance Boling, Hamza Hajama, Ana Georgina Cobián Güemes, Anca M Segall, Elizabeth A Dinsdale, Robert A Edwards
{"title":"Sphae: an automated toolkit for predicting phage therapy candidates from sequencing data.","authors":"Bhavya Papudeshi, Michael J Roach, Vijini Mallawaarachchi, George Bouras, Susanna R Grigson, Sarah K Giles, Clarice M Harker, Abbey L K Hutton, Anita Tarasenko, Laura K Inglis, Alejandro A Vega, Cole Souza, Lance Boling, Hamza Hajama, Ana Georgina Cobián Güemes, Anca M Segall, Elizabeth A Dinsdale, Robert A Edwards","doi":"10.1093/bioadv/vbaf004","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Phage therapy offers a viable alternative for bacterial infections amid rising antimicrobial resistance. Its success relies on selecting safe and effective phage candidates that require comprehensive genomic screening to identify potential risks. However, this process is often labor intensive and time-consuming, hindering rapid clinical deployment.</p><p><strong>Results: </strong>We developed Sphae, an automated bioinformatics pipeline designed to streamline the therapeutic potential of a phage in under 10 minutes. Using Snakemake workflow manager, Sphae integrates tools for quality control, assembly, genome assessment, and annotation tailored specifically for phage biology. Sphae automates the detection of key genomic markers, including virulence factors, antimicrobial resistance genes, and lysogeny indicators such as integrase, recombinase, and transposase, which could preclude therapeutic use. Among the 65 phage sequences analyzed, 28 showed therapeutic potential, 8 failed due to low sequencing depth, 22 contained prophage or virulent markers, and 23 had multiple phage genomes. This workflow produces a report to assess phage safety and therapy suitability quickly. Sphae is scalable and portable, facilitating efficient deployment across most high-performance computing and cloud platforms, accelerating the genomic evaluation process.</p><p><strong>Availability and implementation: </strong>Sphae source code is freely available at https://github.com/linsalrob/sphae, with installation supported on Conda, PyPi, Docker containers.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf004"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783317/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Phage therapy offers a viable alternative for bacterial infections amid rising antimicrobial resistance. Its success relies on selecting safe and effective phage candidates that require comprehensive genomic screening to identify potential risks. However, this process is often labor intensive and time-consuming, hindering rapid clinical deployment.

Results: We developed Sphae, an automated bioinformatics pipeline designed to streamline the therapeutic potential of a phage in under 10 minutes. Using Snakemake workflow manager, Sphae integrates tools for quality control, assembly, genome assessment, and annotation tailored specifically for phage biology. Sphae automates the detection of key genomic markers, including virulence factors, antimicrobial resistance genes, and lysogeny indicators such as integrase, recombinase, and transposase, which could preclude therapeutic use. Among the 65 phage sequences analyzed, 28 showed therapeutic potential, 8 failed due to low sequencing depth, 22 contained prophage or virulent markers, and 23 had multiple phage genomes. This workflow produces a report to assess phage safety and therapy suitability quickly. Sphae is scalable and portable, facilitating efficient deployment across most high-performance computing and cloud platforms, accelerating the genomic evaluation process.

Availability and implementation: Sphae source code is freely available at https://github.com/linsalrob/sphae, with installation supported on Conda, PyPi, Docker containers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信