Comparative evaluation of cell-based assay technologies for scoring drug-induced condensation of SARS-CoV-2 nucleocapsid protein

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Rui Tong Quek , Cyna R. Shirazinejad , Christina L. Young , Kierra S. Hardy , Samuel Lim , Phillip J. Elms , David T. McSwiggen , Timothy J. Mitchison , Pamela A. Silver
{"title":"Comparative evaluation of cell-based assay technologies for scoring drug-induced condensation of SARS-CoV-2 nucleocapsid protein","authors":"Rui Tong Quek ,&nbsp;Cyna R. Shirazinejad ,&nbsp;Christina L. Young ,&nbsp;Kierra S. Hardy ,&nbsp;Samuel Lim ,&nbsp;Phillip J. Elms ,&nbsp;David T. McSwiggen ,&nbsp;Timothy J. Mitchison ,&nbsp;Pamela A. Silver","doi":"10.1016/j.slasd.2025.100220","DOIUrl":null,"url":null,"abstract":"<div><div>Protein-nucleic acid phase separation has been implicated in many diseases such as viral infections, neurodegeneration, and cancer. There is great interest in identifying condensate modulators (CMODs), which are small molecules that alter the dynamics and functions of phase-separated condensates, as a potential therapeutic modality. Most CMODs were identified in cellular high-content screens (HCS) where micron-scale condensates were characterized by fluorescence microscopy. These approaches lack information on protein dynamics, are limited by microscope resolution, and are insensitive to subtle condensation phenotypes missed by overfit analysis pipelines. Here, we evaluate two alternative cell-based assays: high-throughput single molecule tracking (htSMT) and proximity-based condensate biosensors using NanoBIT (split luciferase) and NanoBRET (bioluminescence resonance energy transfer) technologies. We applied these methods to evaluate condensation of the SARS-CoV-2 nucleocapsid (N) protein under GSK3 inhibitor treatment, which we had previously identified in our HCS campaign to induce condensation with well-defined structure-activity relationships (SAR). Using htSMT, we observed robust changes in N protein diffusion as early as 3 h post GSK3 inhibition. Proximity-based N biosensors also reliably reported on condensation, enabling the rapid assaying of large compound libraries with a readout independent of imaging. Both htSMT and proximity-based biosensors performed well in a screening format and provided information on CMOD activity that was complementary to HCS. We expect that this expanded toolkit for interrogating phase-separated proteins will accelerate the identification of CMODs for important therapeutic targets.</div></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"31 ","pages":"Article 100220"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555225000139","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-nucleic acid phase separation has been implicated in many diseases such as viral infections, neurodegeneration, and cancer. There is great interest in identifying condensate modulators (CMODs), which are small molecules that alter the dynamics and functions of phase-separated condensates, as a potential therapeutic modality. Most CMODs were identified in cellular high-content screens (HCS) where micron-scale condensates were characterized by fluorescence microscopy. These approaches lack information on protein dynamics, are limited by microscope resolution, and are insensitive to subtle condensation phenotypes missed by overfit analysis pipelines. Here, we evaluate two alternative cell-based assays: high-throughput single molecule tracking (htSMT) and proximity-based condensate biosensors using NanoBIT (split luciferase) and NanoBRET (bioluminescence resonance energy transfer) technologies. We applied these methods to evaluate condensation of the SARS-CoV-2 nucleocapsid (N) protein under GSK3 inhibitor treatment, which we had previously identified in our HCS campaign to induce condensation with well-defined structure-activity relationships (SAR). Using htSMT, we observed robust changes in N protein diffusion as early as 3 h post GSK3 inhibition. Proximity-based N biosensors also reliably reported on condensation, enabling the rapid assaying of large compound libraries with a readout independent of imaging. Both htSMT and proximity-based biosensors performed well in a screening format and provided information on CMOD activity that was complementary to HCS. We expect that this expanded toolkit for interrogating phase-separated proteins will accelerate the identification of CMODs for important therapeutic targets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
SLAS Discovery
SLAS Discovery Chemistry-Analytical Chemistry
CiteScore
7.00
自引率
3.20%
发文量
58
审稿时长
39 days
期刊介绍: Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease. SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success. SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies. SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology. SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信