MUSET: set of utilities for constructing abundance unitig matrices from sequencing data.

Riccardo Vicedomini, Francesco Andreace, Yoann Dufresne, Rayan Chikhi, Camila Duitama González
{"title":"MUSET: set of utilities for constructing abundance unitig matrices from sequencing data.","authors":"Riccardo Vicedomini, Francesco Andreace, Yoann Dufresne, Rayan Chikhi, Camila Duitama González","doi":"10.1093/bioinformatics/btaf054","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>MUSET is a novel set of utilities designed to efficiently construct abundance unitig matrices from sequencing data. Unitig matrices extend the concept of k-mer matrices by merging overlapping k-mers that unambiguously belong to the same sequence. MUSET addresses the limitations of current software by integrating k-mer counting and unitig extraction to generate unitig matrices containing abundance values, as opposed to only presence-absence in previous tools. These matrices preserve variations between samples while reducing disk space and the number of rows compared to k-mer matrices. We evaluated MUSET's performance using datasets derived from a 618-GB collection of ancient oral sequencing samples, producing a filtered unitig matrix that records abundances in <10 h and 20 GB memory.</p><p><strong>Availability and implementation: </strong>MUSET is open source and publicly available under the AGPL-3.0 licence in GitHub at https://github.com/CamilaDuitama/muset. Source code is implemented in C++ and provided with kmat_tools, a collection of tools for processing k-mer matrices. Version v0.5.1 is available on Zenodo with DOI 10.5281/zenodo.14164801.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: MUSET is a novel set of utilities designed to efficiently construct abundance unitig matrices from sequencing data. Unitig matrices extend the concept of k-mer matrices by merging overlapping k-mers that unambiguously belong to the same sequence. MUSET addresses the limitations of current software by integrating k-mer counting and unitig extraction to generate unitig matrices containing abundance values, as opposed to only presence-absence in previous tools. These matrices preserve variations between samples while reducing disk space and the number of rows compared to k-mer matrices. We evaluated MUSET's performance using datasets derived from a 618-GB collection of ancient oral sequencing samples, producing a filtered unitig matrix that records abundances in <10 h and 20 GB memory.

Availability and implementation: MUSET is open source and publicly available under the AGPL-3.0 licence in GitHub at https://github.com/CamilaDuitama/muset. Source code is implemented in C++ and provided with kmat_tools, a collection of tools for processing k-mer matrices. Version v0.5.1 is available on Zenodo with DOI 10.5281/zenodo.14164801.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信