Social media network public opinion emotion classification method based on multi-feature fusion and multi-scale hybrid neural network.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2643
Yuan Yao, Xi Chen, Peng Zhang
{"title":"Social media network public opinion emotion classification method based on multi-feature fusion and multi-scale hybrid neural network.","authors":"Yuan Yao, Xi Chen, Peng Zhang","doi":"10.7717/peerj-cs.2643","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of the internet, an increasing number of users express their subjective opinions on social media platforms. By analyzing the sentiment of these texts, we can gain insights into public sentiment, industry changes, and market trends, enabling timely adjustments and preemptive strategies. This article initially constructs vectors using semantic fusion and word order features. Subsequently, it develops a lexicon vector based on word similarity and leverages supervised corpora training to obtain a more pronounced transfer weight vector of sentiment intensity. A multi-feature fused emotional word vector is ultimately formed by concatenating and fusing these weighted transfer vectors. Experimental comparisons on two multi-class microblog comment datasets demonstrate that the multi-feature fusion (WOOSD-CNN) word vector model achieves notable improvements in sentiment polarity accuracy and categorization effectiveness. Additionally, for aspect-level sentiment analysis of user generated content (UGC) text, a unified learning framework based on an information interaction channel is proposed, which enables the team productivity center (TPC) task. Specifically, an information interaction channel is designed to assist the model in leveraging the latent interactive characteristics of text. An in-depth analysis addresses the label drift phenomenon between aspect term words, and a position-aware module is constructed to mitigate the local development plan (LDP) issue.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2643"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784739/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2643","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of the internet, an increasing number of users express their subjective opinions on social media platforms. By analyzing the sentiment of these texts, we can gain insights into public sentiment, industry changes, and market trends, enabling timely adjustments and preemptive strategies. This article initially constructs vectors using semantic fusion and word order features. Subsequently, it develops a lexicon vector based on word similarity and leverages supervised corpora training to obtain a more pronounced transfer weight vector of sentiment intensity. A multi-feature fused emotional word vector is ultimately formed by concatenating and fusing these weighted transfer vectors. Experimental comparisons on two multi-class microblog comment datasets demonstrate that the multi-feature fusion (WOOSD-CNN) word vector model achieves notable improvements in sentiment polarity accuracy and categorization effectiveness. Additionally, for aspect-level sentiment analysis of user generated content (UGC) text, a unified learning framework based on an information interaction channel is proposed, which enables the team productivity center (TPC) task. Specifically, an information interaction channel is designed to assist the model in leveraging the latent interactive characteristics of text. An in-depth analysis addresses the label drift phenomenon between aspect term words, and a position-aware module is constructed to mitigate the local development plan (LDP) issue.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信