Secure software development: leveraging application call graphs to detect security vulnerabilities.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2641
Lei Yan, Guanghuai Zhao, Xiaohui Li, Pengxuan Sun
{"title":"Secure software development: leveraging application call graphs to detect security vulnerabilities.","authors":"Lei Yan, Guanghuai Zhao, Xiaohui Li, Pengxuan Sun","doi":"10.7717/peerj-cs.2641","DOIUrl":null,"url":null,"abstract":"<p><p>The inconsistency in software development standards frequently leads to vulnerabilities that can jeopardize an application's cryptographic integrity. This situation can result in incomplete or flawed encryption processes. Vulnerabilities may manifest as missing, bypassed, or improperly executed encryption functions or the absence of critical cryptographic mechanisms, which eventually weaken security goals. This article introduces a thorough method for detecting vulnerabilities using dynamic and static analysis, focusing on a cryptographic function dominance tree. This strategy systematically minimizes the likelihood of integrity breaches in cryptographic applications. A layered and modular model is developed to maintain integrity by mapping the entire flow of cryptographic function calls across various components. The cryptographic function call graph and dominance tree are extracted and subsequently analyzed using an integrated dynamic and static technique. The extracted information undergoes strict evaluation against the anticipated function call sequence in the relevant cryptographic module to identify and localize potential security issues. Experimental findings demonstrate that the proposed method considerably enhances the accuracy and comprehensiveness of vulnerability detection in cryptographic applications, improving implementation security and resilience against misuse vulnerabilities.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2641"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2641","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The inconsistency in software development standards frequently leads to vulnerabilities that can jeopardize an application's cryptographic integrity. This situation can result in incomplete or flawed encryption processes. Vulnerabilities may manifest as missing, bypassed, or improperly executed encryption functions or the absence of critical cryptographic mechanisms, which eventually weaken security goals. This article introduces a thorough method for detecting vulnerabilities using dynamic and static analysis, focusing on a cryptographic function dominance tree. This strategy systematically minimizes the likelihood of integrity breaches in cryptographic applications. A layered and modular model is developed to maintain integrity by mapping the entire flow of cryptographic function calls across various components. The cryptographic function call graph and dominance tree are extracted and subsequently analyzed using an integrated dynamic and static technique. The extracted information undergoes strict evaluation against the anticipated function call sequence in the relevant cryptographic module to identify and localize potential security issues. Experimental findings demonstrate that the proposed method considerably enhances the accuracy and comprehensiveness of vulnerability detection in cryptographic applications, improving implementation security and resilience against misuse vulnerabilities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信