Ensemble graph auto-encoders for clustering and link prediction.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2648
Chengxin Xie, Jingui Huang, Yongjiang Shi, Hui Pang, Liting Gao, Xiumei Wen
{"title":"Ensemble graph auto-encoders for clustering and link prediction.","authors":"Chengxin Xie, Jingui Huang, Yongjiang Shi, Hui Pang, Liting Gao, Xiumei Wen","doi":"10.7717/peerj-cs.2648","DOIUrl":null,"url":null,"abstract":"<p><p>Graph auto-encoders are a crucial research area within graph neural networks, commonly employed for generating graph embeddings while minimizing errors in unsupervised learning. Traditional graph auto-encoders focus on reconstructing minimal graph data loss to encode neighborhood information for each node, yielding node embedding representations. However, existing graph auto-encoder models often overlook node representations and fail to capture contextual node information within the graph data, resulting in poor embedding effects. Accordingly, this study proposes the ensemble graph auto-encoders (E-GAE) model. It utilizes the ensemble random walk graph auto-encoder, the random walk graph auto-encoder of the ensemble network, and the graph attention auto-encoder to generate three node embedding matrices Z. Then, these techniques are combined using adaptive weights to reconstruct a new node embedding matrix. This method addresses the problem of low-quality embeddings. The model's performance is evaluated using three publicly available datasets (Cora, Citeseer, and PubMed), indicating its effectiveness through multiple experiments. It achieves up to a 2.0% improvement in the link prediction task and a 9.4% enhancement in the clustering task. Our code for this work can be found at https://github.com/xcgydfjjjderg/graphautoencoder.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2648"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2648","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Graph auto-encoders are a crucial research area within graph neural networks, commonly employed for generating graph embeddings while minimizing errors in unsupervised learning. Traditional graph auto-encoders focus on reconstructing minimal graph data loss to encode neighborhood information for each node, yielding node embedding representations. However, existing graph auto-encoder models often overlook node representations and fail to capture contextual node information within the graph data, resulting in poor embedding effects. Accordingly, this study proposes the ensemble graph auto-encoders (E-GAE) model. It utilizes the ensemble random walk graph auto-encoder, the random walk graph auto-encoder of the ensemble network, and the graph attention auto-encoder to generate three node embedding matrices Z. Then, these techniques are combined using adaptive weights to reconstruct a new node embedding matrix. This method addresses the problem of low-quality embeddings. The model's performance is evaluated using three publicly available datasets (Cora, Citeseer, and PubMed), indicating its effectiveness through multiple experiments. It achieves up to a 2.0% improvement in the link prediction task and a 9.4% enhancement in the clustering task. Our code for this work can be found at https://github.com/xcgydfjjjderg/graphautoencoder.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信