{"title":"Ensemble graph auto-encoders for clustering and link prediction.","authors":"Chengxin Xie, Jingui Huang, Yongjiang Shi, Hui Pang, Liting Gao, Xiumei Wen","doi":"10.7717/peerj-cs.2648","DOIUrl":null,"url":null,"abstract":"<p><p>Graph auto-encoders are a crucial research area within graph neural networks, commonly employed for generating graph embeddings while minimizing errors in unsupervised learning. Traditional graph auto-encoders focus on reconstructing minimal graph data loss to encode neighborhood information for each node, yielding node embedding representations. However, existing graph auto-encoder models often overlook node representations and fail to capture contextual node information within the graph data, resulting in poor embedding effects. Accordingly, this study proposes the ensemble graph auto-encoders (E-GAE) model. It utilizes the ensemble random walk graph auto-encoder, the random walk graph auto-encoder of the ensemble network, and the graph attention auto-encoder to generate three node embedding matrices Z. Then, these techniques are combined using adaptive weights to reconstruct a new node embedding matrix. This method addresses the problem of low-quality embeddings. The model's performance is evaluated using three publicly available datasets (Cora, Citeseer, and PubMed), indicating its effectiveness through multiple experiments. It achieves up to a 2.0% improvement in the link prediction task and a 9.4% enhancement in the clustering task. Our code for this work can be found at https://github.com/xcgydfjjjderg/graphautoencoder.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2648"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2648","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graph auto-encoders are a crucial research area within graph neural networks, commonly employed for generating graph embeddings while minimizing errors in unsupervised learning. Traditional graph auto-encoders focus on reconstructing minimal graph data loss to encode neighborhood information for each node, yielding node embedding representations. However, existing graph auto-encoder models often overlook node representations and fail to capture contextual node information within the graph data, resulting in poor embedding effects. Accordingly, this study proposes the ensemble graph auto-encoders (E-GAE) model. It utilizes the ensemble random walk graph auto-encoder, the random walk graph auto-encoder of the ensemble network, and the graph attention auto-encoder to generate three node embedding matrices Z. Then, these techniques are combined using adaptive weights to reconstruct a new node embedding matrix. This method addresses the problem of low-quality embeddings. The model's performance is evaluated using three publicly available datasets (Cora, Citeseer, and PubMed), indicating its effectiveness through multiple experiments. It achieves up to a 2.0% improvement in the link prediction task and a 9.4% enhancement in the clustering task. Our code for this work can be found at https://github.com/xcgydfjjjderg/graphautoencoder.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.