Unveiling Spinocerebellar Ataxia 25: First Case Report of a Brazilian Family.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Renata Barreto Tenorio, José Sávio Soares de Lira, Marcela Ferreira Cordellini, Karina Carvalho Donis
{"title":"Unveiling Spinocerebellar Ataxia 25: First Case Report of a Brazilian Family.","authors":"Renata Barreto Tenorio, José Sávio Soares de Lira, Marcela Ferreira Cordellini, Karina Carvalho Donis","doi":"10.1007/s12311-025-01794-2","DOIUrl":null,"url":null,"abstract":"<p><p>Spinocerebellar ataxia type 25 (SCA25) is a rare autosomal dominant disorder caused by heterozygous pathogenic variants in the PNPT1 gene, primarily affecting the critical S1 RNA-binding domain. This study reports the first Brazilian and South American family with SCA25. To describe the clinical, genetic, and molecular findings in a family with a novel PNPT1 variant and compare them with previously reported cases. Clinical evaluation, neuroimaging, and genetic testing were performed on affected family members. The proband underwent clinical exome sequencing, with Sanger confirmation of the identified variant. Computational tools, including SpliceAI, were used to predict the molecular consequences of the variant. The proband, a 1-year-8-month-old girl, presented with progressive ataxia, cerebellar atrophy, and sensory neuropathy. Genetic testing identified a novel heterozygous truncating variant in PNPT1 (c.2068del; p.?), inherited from her father, who was mildly affected with polyneuropathy but no ataxia. SpliceAI predicted significant splicing disruptions, including intron retention or exon skipping, leading to a frameshift (p.(Arg690Glyfs*5)) and likely triggering nonsense-mediated decay or post-translational degradation. These findings align with previously reported PNPT1 variants associated with SCA25, which exhibit phenotypic variability and incomplete penetrance. This report expands the clinical and genetic spectrum of SCA25 and highlights the importance of considering this condition in the differential diagnosis of progressive ataxias. Further studies, including RNA and protein analyses, are required to confirm the molecular consequences of the PNPT1:c.2068del variant and to advance our understanding of the pathophysiology of SCA25.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":"24 2","pages":"41"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-025-01794-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spinocerebellar ataxia type 25 (SCA25) is a rare autosomal dominant disorder caused by heterozygous pathogenic variants in the PNPT1 gene, primarily affecting the critical S1 RNA-binding domain. This study reports the first Brazilian and South American family with SCA25. To describe the clinical, genetic, and molecular findings in a family with a novel PNPT1 variant and compare them with previously reported cases. Clinical evaluation, neuroimaging, and genetic testing were performed on affected family members. The proband underwent clinical exome sequencing, with Sanger confirmation of the identified variant. Computational tools, including SpliceAI, were used to predict the molecular consequences of the variant. The proband, a 1-year-8-month-old girl, presented with progressive ataxia, cerebellar atrophy, and sensory neuropathy. Genetic testing identified a novel heterozygous truncating variant in PNPT1 (c.2068del; p.?), inherited from her father, who was mildly affected with polyneuropathy but no ataxia. SpliceAI predicted significant splicing disruptions, including intron retention or exon skipping, leading to a frameshift (p.(Arg690Glyfs*5)) and likely triggering nonsense-mediated decay or post-translational degradation. These findings align with previously reported PNPT1 variants associated with SCA25, which exhibit phenotypic variability and incomplete penetrance. This report expands the clinical and genetic spectrum of SCA25 and highlights the importance of considering this condition in the differential diagnosis of progressive ataxias. Further studies, including RNA and protein analyses, are required to confirm the molecular consequences of the PNPT1:c.2068del variant and to advance our understanding of the pathophysiology of SCA25.

揭示脊髓小脑性共济失调25例:巴西一个家庭的首例报告。
脊髓小脑性共济失调25型(SCA25)是一种罕见的常染色体显性遗传病,由PNPT1基因的杂合致病性变异引起,主要影响关键的S1 rna结合结构域。本研究报道了首个巴西和南美的SCA25家族。描述一个新型PNPT1变异家族的临床、遗传和分子发现,并将其与先前报道的病例进行比较。对受影响的家庭成员进行了临床评估、神经影像学和基因检测。先证者进行了临床外显子组测序,Sanger确认了所鉴定的变异。包括SpliceAI在内的计算工具被用来预测这种变异的分子后果。先证者为1- 8个月大的女婴,表现为进行性共济失调、小脑萎缩和感觉神经病变。基因检测鉴定出PNPT1 (c.2068del;P. ?),遗传自父亲,父亲患有轻度多发性神经病,但无共济失调。SpliceAI预测了显著的剪接中断,包括内含子保留或外显子跳跃,导致移码(p.(Arg690Glyfs*5)),并可能引发无义介导的衰变或翻译后降解。这些发现与先前报道的与SCA25相关的PNPT1变异一致,后者表现出表型变异性和不完全外显性。本报告扩展了SCA25的临床和遗传谱,并强调了在进行性共济失调的鉴别诊断中考虑这种情况的重要性。需要进一步的研究,包括RNA和蛋白质分析,以确认PNPT1的分子后果:c。2068del变异体,并促进我们对SCA25病理生理的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebellum
Cerebellum 医学-神经科学
CiteScore
6.40
自引率
14.30%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction. The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging. The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信