Quality risk management for microbial control in membrane-based water for injection production using fuzzy-failure mode and effects analysis.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-12-23 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2565
Luoyin Zhu, Yi Liang
{"title":"Quality risk management for microbial control in membrane-based water for injection production using fuzzy-failure mode and effects analysis.","authors":"Luoyin Zhu, Yi Liang","doi":"10.7717/peerj-cs.2565","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial proliferation presents a significant challenge in membrane-based water for injection (WFI) production, particularly in systems with storage and ambient distribution, commonly refered to as cold WFI production. A comprehensive microbial risk assessment of membrane-based WFI systems was performed by employing Fuzzy-Failure Mode and Effects Analysis (Fuzzy-FMEA) to evaluate the potential microbial risks. Failure modes were identified and prioritized based on the Risk Priority Number (RPN), with appropriate preventive measures recommended to control failure modes that could increase the microbial load and mitigate their impact. Key hazards were identified including fouling of ultrafiltration (UF) membranes, insufficient sealing of heat exchangers, leakage in reverse osmosis (RO) membranes, and ineffective vent filters unable to remove airborn microorganism. Based on Fuzzy-FMEA results, suggestions for optimization were proposed to improve microbial control in membrane-based WFI systems in the pharmaceutical industry.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2565"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784823/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2565","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial proliferation presents a significant challenge in membrane-based water for injection (WFI) production, particularly in systems with storage and ambient distribution, commonly refered to as cold WFI production. A comprehensive microbial risk assessment of membrane-based WFI systems was performed by employing Fuzzy-Failure Mode and Effects Analysis (Fuzzy-FMEA) to evaluate the potential microbial risks. Failure modes were identified and prioritized based on the Risk Priority Number (RPN), with appropriate preventive measures recommended to control failure modes that could increase the microbial load and mitigate their impact. Key hazards were identified including fouling of ultrafiltration (UF) membranes, insufficient sealing of heat exchangers, leakage in reverse osmosis (RO) membranes, and ineffective vent filters unable to remove airborn microorganism. Based on Fuzzy-FMEA results, suggestions for optimization were proposed to improve microbial control in membrane-based WFI systems in the pharmaceutical industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信