Automated Patient-specific Quality Assurance for Automated Segmentation of Organs at Risk in Nasopharyngeal Carcinoma Radiotherapy.

IF 2.5 4区 医学 Q3 ONCOLOGY
Yixuan Wang, Jiang Hu, Lixin Chen, Dandan Zhang, Jinhan Zhu
{"title":"Automated Patient-specific Quality Assurance for Automated Segmentation of Organs at Risk in Nasopharyngeal Carcinoma Radiotherapy.","authors":"Yixuan Wang, Jiang Hu, Lixin Chen, Dandan Zhang, Jinhan Zhu","doi":"10.1177/10732748251318387","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Precision radiotherapy relies on accurate segmentation of tumor targets and organs at risk (OARs). Clinicians manually review automatically delineated structures on a case-by-case basis, a time-consuming process dependent on reviewer experience and alertness. This study proposes a general process for automated threshold generation for structural evaluation indicators and patient-specific quality assurance (QA) for automated segmentation of nasopharyngeal carcinoma (NPC).</p><p><strong>Methods: </strong>The patient-specific QA process for automated segmentation involves determining the confidence limit and error structure highlight stage. Three expert physicians segmented 17 OARs using computed tomography images of NPC and compared them using the Dice similarity coefficient, the maximum Hausdorff distance, and the mean distance to agreement. For each OAR, the 95% confidence interval was calculated as the confidence limit for each indicator. If two or more evaluation indicators (N2) or one or more evaluation indicators (N1) exceeded the confidence limits, the structure segmentation result was considered abnormal. The quantitative performances of these two methods were compared with those obtained by artificially introducing small/medium and serious errors.</p><p><strong>Results: </strong>The sensitivity, specificity, balanced accuracy, and F-score values for N2 were 0.944 ± 0.052, 0.827 ± 0.149, 0.886 ± 0.076, and 0.936 ± 0.045, respectively, whereas those for N1 were 0.955 ± 0.045, 0.788 ± 0.189, 0.878 ± 0.096, and 0.948 ± 0.035, respectively. N2 and N1 had small/medium error detection rates of 97.67 ± 0.04% and 98.67 ± 0.04%, respectively, with a serious error detection rate of 100%.</p><p><strong>Conclusion: </strong>The proposed automated patient-specific QA process effectively detected segmentation abnormalities, particularly serious errors. These are crucial for enhancing review efficiency and automated segmentation, and for improving physician confidence in automated segmentation.</p>","PeriodicalId":49093,"journal":{"name":"Cancer Control","volume":"32 ","pages":"10732748251318387"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10732748251318387","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Precision radiotherapy relies on accurate segmentation of tumor targets and organs at risk (OARs). Clinicians manually review automatically delineated structures on a case-by-case basis, a time-consuming process dependent on reviewer experience and alertness. This study proposes a general process for automated threshold generation for structural evaluation indicators and patient-specific quality assurance (QA) for automated segmentation of nasopharyngeal carcinoma (NPC).

Methods: The patient-specific QA process for automated segmentation involves determining the confidence limit and error structure highlight stage. Three expert physicians segmented 17 OARs using computed tomography images of NPC and compared them using the Dice similarity coefficient, the maximum Hausdorff distance, and the mean distance to agreement. For each OAR, the 95% confidence interval was calculated as the confidence limit for each indicator. If two or more evaluation indicators (N2) or one or more evaluation indicators (N1) exceeded the confidence limits, the structure segmentation result was considered abnormal. The quantitative performances of these two methods were compared with those obtained by artificially introducing small/medium and serious errors.

Results: The sensitivity, specificity, balanced accuracy, and F-score values for N2 were 0.944 ± 0.052, 0.827 ± 0.149, 0.886 ± 0.076, and 0.936 ± 0.045, respectively, whereas those for N1 were 0.955 ± 0.045, 0.788 ± 0.189, 0.878 ± 0.096, and 0.948 ± 0.035, respectively. N2 and N1 had small/medium error detection rates of 97.67 ± 0.04% and 98.67 ± 0.04%, respectively, with a serious error detection rate of 100%.

Conclusion: The proposed automated patient-specific QA process effectively detected segmentation abnormalities, particularly serious errors. These are crucial for enhancing review efficiency and automated segmentation, and for improving physician confidence in automated segmentation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Control
Cancer Control ONCOLOGY-
CiteScore
3.80
自引率
0.00%
发文量
148
审稿时长
>12 weeks
期刊介绍: Cancer Control is a JCR-ranked, peer-reviewed open access journal whose mission is to advance the prevention, detection, diagnosis, treatment, and palliative care of cancer by enabling researchers, doctors, policymakers, and other healthcare professionals to freely share research along the cancer control continuum. Our vision is a world where gold-standard cancer care is the norm, not the exception.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信