Efficacy of hydrogel spacer compared with intensity-modulated radiotherapy for 3-dimensional conformal radiotherapy for prostate cancer.

IF 1.1 4区 医学 Q4 ONCOLOGY
Tetsukazu Kiriyama, Akira Fukui, Hirohumi Ishikawa, Misako Doi, Yuki Nishimoto, Kenta Cyosei, Koji Kishimoto, Tanabe Yoshinori
{"title":"Efficacy of hydrogel spacer compared with intensity-modulated radiotherapy for 3-dimensional conformal radiotherapy for prostate cancer.","authors":"Tetsukazu Kiriyama, Akira Fukui, Hirohumi Ishikawa, Misako Doi, Yuki Nishimoto, Kenta Cyosei, Koji Kishimoto, Tanabe Yoshinori","doi":"10.1016/j.meddos.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>One major adverse effect of prostate radiotherapy is associated with the rectum. The SpaceOAR system has been developed to address this problem, as it enables treatment planning with a reduced dose to the rectum. This study aimed to evaluate and compare the treatment plans between three-dimensional conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) for prostate cancer using the SpaceOAR system. Thirty-five patients treated with prostate cancer radiation using the SpaceOAR system received a total radiation dose of 60 Gy/20 fractions. The dose constraints and robustness of the plan for VMAT and 3D-CRT were compared. For 3D-CRT, 6-field conformal method and 2-arc conformal method were created and compared in 3 treatment plans together with VMAT. The dose-constraint evaluation was performed using the planning target volume (PTV), rectum (mean dose), bladder (mean dose), and femoral head (mean dose). One issue associated with prostate radiotherapy is the physiological movement of the target prostate gland, which reduces the accuracy of irradiation. The prostate moves several millimeters during irradiation due to physiological movements, and there are reports of a decrease in the PTV index due to this effect. This has a significant impact on the cure rate of prostate cancer. A comparative study of the 3 irradiation methods was conducted to investigate this issue. Each study item was analyzed using the Friedman test to determine the significance of the 3 irradiation methods. Our analysis showed that the dose constraint was statistically significant for VMAT, but 3D-CRT was also sufficient in achieving dose constraints. The hydrogel spacer reduced the rectal dose and improved the dose-constrained fulfillment rate in VMAT and 3D-CRT. In a study of prostate motion during irradiation, 3D-CRT, a robust plan, was superior in the PTV mean evaluation over VMAT, where the multileaf collimator moved in fine increments. VMAT is currently the standard treatment for prostate cancer; however, with the introduction of the SpaceOAR system using hydrogel spacers, 3D-CRT may also be a viable option for prostate cancer treatment.</p>","PeriodicalId":49837,"journal":{"name":"Medical Dosimetry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Dosimetry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.meddos.2025.01.005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One major adverse effect of prostate radiotherapy is associated with the rectum. The SpaceOAR system has been developed to address this problem, as it enables treatment planning with a reduced dose to the rectum. This study aimed to evaluate and compare the treatment plans between three-dimensional conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) for prostate cancer using the SpaceOAR system. Thirty-five patients treated with prostate cancer radiation using the SpaceOAR system received a total radiation dose of 60 Gy/20 fractions. The dose constraints and robustness of the plan for VMAT and 3D-CRT were compared. For 3D-CRT, 6-field conformal method and 2-arc conformal method were created and compared in 3 treatment plans together with VMAT. The dose-constraint evaluation was performed using the planning target volume (PTV), rectum (mean dose), bladder (mean dose), and femoral head (mean dose). One issue associated with prostate radiotherapy is the physiological movement of the target prostate gland, which reduces the accuracy of irradiation. The prostate moves several millimeters during irradiation due to physiological movements, and there are reports of a decrease in the PTV index due to this effect. This has a significant impact on the cure rate of prostate cancer. A comparative study of the 3 irradiation methods was conducted to investigate this issue. Each study item was analyzed using the Friedman test to determine the significance of the 3 irradiation methods. Our analysis showed that the dose constraint was statistically significant for VMAT, but 3D-CRT was also sufficient in achieving dose constraints. The hydrogel spacer reduced the rectal dose and improved the dose-constrained fulfillment rate in VMAT and 3D-CRT. In a study of prostate motion during irradiation, 3D-CRT, a robust plan, was superior in the PTV mean evaluation over VMAT, where the multileaf collimator moved in fine increments. VMAT is currently the standard treatment for prostate cancer; however, with the introduction of the SpaceOAR system using hydrogel spacers, 3D-CRT may also be a viable option for prostate cancer treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Dosimetry
Medical Dosimetry 医学-核医学
CiteScore
2.40
自引率
0.00%
发文量
51
审稿时长
34 days
期刊介绍: Medical Dosimetry, the official journal of the American Association of Medical Dosimetrists, is the key source of information on new developments for the medical dosimetrist. Practical and comprehensive in coverage, the journal features original contributions and review articles by medical dosimetrists, oncologists, physicists, and radiation therapy technologists on clinical applications and techniques of external beam, interstitial, intracavitary and intraluminal irradiation in cancer management. Articles dealing primarily with physics will be reviewed by a specially appointed team of experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信