mTOR downregulation promotes anti-inflammatory responses via the CCL3-CCR5 axis in hypoxic retinopathy.

IF 4.6 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Therapy-Methods & Clinical Development Pub Date : 2024-12-31 eCollection Date: 2025-03-13 DOI:10.1016/j.omtm.2024.101404
Tae Kwon Moon, Im Kyeung Kang, Kyoung Jin Lee, Ji Hyun Kim, Hee Jong Kim, A Reum Han, Ha-Na Woo, Joo Yong Lee, Jun-Sub Choi, Keerang Park, Heuiran Lee
{"title":"mTOR downregulation promotes anti-inflammatory responses via the CCL3-CCR5 axis in hypoxic retinopathy.","authors":"Tae Kwon Moon, Im Kyeung Kang, Kyoung Jin Lee, Ji Hyun Kim, Hee Jong Kim, A Reum Han, Ha-Na Woo, Joo Yong Lee, Jun-Sub Choi, Keerang Park, Heuiran Lee","doi":"10.1016/j.omtm.2024.101404","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic retinopathies, including diabetic retinopathy, are major contributors to vision impairment, mainly due to accelerated angiogenesis and inflammation. Previously, we demonstrated that AAV2-shmTOR, effective across distinct species, holds therapeutic promise by modulating the activated mTOR pathway, yet its mechanisms for reducing inflammation remain largely unexplored. To investigate AAV2-shmTOR's impact on atypical inflammation in these conditions, we employed an <i>in vivo</i> model of oxygen-induced retinopathy and an <i>in vitro</i> model using rMC1 Müller cells. AAV2-shmTOR notably decreased mTOR expression in rMC1 cells under hypoxic conditions, as verified by co-staining for mTOR and glial fibrillary acidic protein (GFAP). It effectively interrupted the activation of mTOR signaling triggered by hypoxia. It diminished the secretion of CCL3 from rMC1 cells, consequently reducing microglial migration in response to conditioned media from AAV2-shmTOR-treated rMC1 cells. Notably, the virus lowered CCL3 expression in Müller cells and reduced the presence of CCR5-positive microglia <i>in vivo</i>, indicating its effectiveness in targeted inflammation management via the CCL3-CCR5 pathway. These findings thus highlight the potential of AAV2-shmTOR to exert anti-inflammatory effects by influencing the mTOR and subsequent CCL3-CCR5 pathways in hypoxic retinopathies, presenting a novel therapeutic approach for retinal diseases marked by hypoxia-driven inflammation.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 1","pages":"101404"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101404","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoxic retinopathies, including diabetic retinopathy, are major contributors to vision impairment, mainly due to accelerated angiogenesis and inflammation. Previously, we demonstrated that AAV2-shmTOR, effective across distinct species, holds therapeutic promise by modulating the activated mTOR pathway, yet its mechanisms for reducing inflammation remain largely unexplored. To investigate AAV2-shmTOR's impact on atypical inflammation in these conditions, we employed an in vivo model of oxygen-induced retinopathy and an in vitro model using rMC1 Müller cells. AAV2-shmTOR notably decreased mTOR expression in rMC1 cells under hypoxic conditions, as verified by co-staining for mTOR and glial fibrillary acidic protein (GFAP). It effectively interrupted the activation of mTOR signaling triggered by hypoxia. It diminished the secretion of CCL3 from rMC1 cells, consequently reducing microglial migration in response to conditioned media from AAV2-shmTOR-treated rMC1 cells. Notably, the virus lowered CCL3 expression in Müller cells and reduced the presence of CCR5-positive microglia in vivo, indicating its effectiveness in targeted inflammation management via the CCL3-CCR5 pathway. These findings thus highlight the potential of AAV2-shmTOR to exert anti-inflammatory effects by influencing the mTOR and subsequent CCL3-CCR5 pathways in hypoxic retinopathies, presenting a novel therapeutic approach for retinal diseases marked by hypoxia-driven inflammation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy-Methods & Clinical Development
Molecular Therapy-Methods & Clinical Development Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.90
自引率
4.30%
发文量
163
审稿时长
12 weeks
期刊介绍: The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella. Topics of particular interest within the journal''s scope include: Gene vector engineering and production, Methods for targeted genome editing and engineering, Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells, Methods for gene and cell vector delivery, Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine, Analysis of gene and cell vector biodistribution and tracking, Pharmacology/toxicology studies of new and next-generation vectors, Methods for cell isolation, engineering, culture, expansion, and transplantation, Cell processing, storage, and banking for therapeutic application, Preclinical and QC/QA assay development, Translational and clinical scale-up and Good Manufacturing procedures and process development, Clinical protocol development, Computational and bioinformatic methods for analysis, modeling, or visualization of biological data, Negotiating the regulatory approval process and obtaining such approval for clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信