Jiří Hadrava , Jan Klečka , Kevin Moran , Irena Klečková , Scott Kelso , Claudia Etzbauer , Jeffrey H. Skevington , Ximo Mengual
{"title":"The evolution of wasp mimicry and biogeography in the genus Temnostoma (Diptera: Syrphidae)","authors":"Jiří Hadrava , Jan Klečka , Kevin Moran , Irena Klečková , Scott Kelso , Claudia Etzbauer , Jeffrey H. Skevington , Ximo Mengual","doi":"10.1016/j.ympev.2025.108298","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most remarkable examples of Batesian mimicry occurs in the genus <em>Temnostoma</em> Le Peletier & Audinet-Serville, 1828 (Diptera: Syrphidae). Adults of this genus have an overall resemblance to hymenopterans combined with behavioural mimicry (they move the fore legs in front of the head mimicking hymenopteran antennae). While some species of <em>Temnostoma</em> are considered highly accurate mimics of social wasps, other species have a darker colour pattern and are rather relatively poor yellowjacket mimics. Both colour phenotypes are widespread through the Holarctic. Here, we infer for the first time the evolutionary history of the genus with special focus on the evolution of mimicry and biogeography.</div><div>With material covering 75 % of known species of <em>Temnostoma</em> and both colour phenotypes from each biogeographical region, we inferred a molecular phylogeny based on six molecular markers (mitochondrial protein-coding COI gene, nuclear 28 s rRNA gene, and four nuclear protein-coding genes: AATS, CK1, TULP, and RBP-15). Using Bayesian inference, we obtained a highly resolved phylogenetic tree supporting the monophyly of the genus <em>Temnostoma</em> as a sister group of genus <em>Takaomyia</em> Hervé-Bazin, 1914. Within <em>Temnostoma</em>, <em>Te. daochus</em> and <em>Te. barberi</em> (two Nearctic species with strikingly different mimicry patterns) were found to be closely related to each other and together form a lineage sister to the rest of the genus.</div><div>Our results suggest that the behavioural mimicry of wasp antennae is a plesiomorphic state inherited from a common ancestor that includes the genera <em>Temnostoma</em> and <em>Takaomyia</em>. Within <em>Temnostoma</em>, the dark colour pattern (poor yellowjacket mimicry) appears to be an ancestral state and highly accurate social wasp mimicry has appeared two times independently within the genus. In some species inhabiting northern parts of the Holarctic, secondary darkening and consequent degradation of the yellowjacket mimicry appeared. This indicates high evolutionary plasticity and ongoing selection pressure on morphological characters related to mimicry in hover flies.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"205 ","pages":"Article 108298"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790325000156","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most remarkable examples of Batesian mimicry occurs in the genus Temnostoma Le Peletier & Audinet-Serville, 1828 (Diptera: Syrphidae). Adults of this genus have an overall resemblance to hymenopterans combined with behavioural mimicry (they move the fore legs in front of the head mimicking hymenopteran antennae). While some species of Temnostoma are considered highly accurate mimics of social wasps, other species have a darker colour pattern and are rather relatively poor yellowjacket mimics. Both colour phenotypes are widespread through the Holarctic. Here, we infer for the first time the evolutionary history of the genus with special focus on the evolution of mimicry and biogeography.
With material covering 75 % of known species of Temnostoma and both colour phenotypes from each biogeographical region, we inferred a molecular phylogeny based on six molecular markers (mitochondrial protein-coding COI gene, nuclear 28 s rRNA gene, and four nuclear protein-coding genes: AATS, CK1, TULP, and RBP-15). Using Bayesian inference, we obtained a highly resolved phylogenetic tree supporting the monophyly of the genus Temnostoma as a sister group of genus Takaomyia Hervé-Bazin, 1914. Within Temnostoma, Te. daochus and Te. barberi (two Nearctic species with strikingly different mimicry patterns) were found to be closely related to each other and together form a lineage sister to the rest of the genus.
Our results suggest that the behavioural mimicry of wasp antennae is a plesiomorphic state inherited from a common ancestor that includes the genera Temnostoma and Takaomyia. Within Temnostoma, the dark colour pattern (poor yellowjacket mimicry) appears to be an ancestral state and highly accurate social wasp mimicry has appeared two times independently within the genus. In some species inhabiting northern parts of the Holarctic, secondary darkening and consequent degradation of the yellowjacket mimicry appeared. This indicates high evolutionary plasticity and ongoing selection pressure on morphological characters related to mimicry in hover flies.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.