GEMCAT-a new algorithm for gene expression-based prediction of metabolic alterations.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-01-31 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqaf003
Suraj Sharma, Roland Sauter, Madlen Hotze, Aaron Marcellus Paul Prowatke, Marc Niere, Tobias Kipura, Anna-Sophia Egger, Kathrin Thedieck, Marcel Kwiatkowski, Mathias Ziegler, Ines Heiland
{"title":"GEMCAT-a new algorithm for gene expression-based prediction of metabolic alterations.","authors":"Suraj Sharma, Roland Sauter, Madlen Hotze, Aaron Marcellus Paul Prowatke, Marc Niere, Tobias Kipura, Anna-Sophia Egger, Kathrin Thedieck, Marcel Kwiatkowski, Mathias Ziegler, Ines Heiland","doi":"10.1093/nargab/lqaf003","DOIUrl":null,"url":null,"abstract":"<p><p>The interpretation of multi-omics datasets obtained from high-throughput approaches is important to understand disease-related physiological changes and to predict biomarkers in body fluids. We present a new metabolite-centred genome-scale metabolic modelling algorithm, the Gene Expression-based Metabolite Centrality Analysis Tool (GEMCAT). GEMCAT enables integration of transcriptomics or proteomics data to predict changes in metabolite concentrations, which can be verified by targeted metabolomics. In addition, GEMCAT allows to trace measured and predicted metabolic changes back to the underlying alterations in gene expression or proteomics and thus enables functional interpretation and integration of multi-omics data. We demonstrate the predictive capacity of GEMCAT on three datasets and genome-scale metabolic networks from two different organisms: (i) we integrated transcriptomics and metabolomics data from an engineered human cell line with a functional deletion of the mitochondrial NAD transporter; (ii) we used a large multi-tissue multi-omics dataset from rats for transcriptome- and proteome-based prediction and verification of training-induced metabolic changes and achieved an average prediction accuracy of 70%; and (iii) we used proteomics measurements from patients with inflammatory bowel disease and verified the predicted changes using metabolomics data from the same patients. For this dataset, the prediction accuracy achieved by GEMCAT was 79%.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf003"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The interpretation of multi-omics datasets obtained from high-throughput approaches is important to understand disease-related physiological changes and to predict biomarkers in body fluids. We present a new metabolite-centred genome-scale metabolic modelling algorithm, the Gene Expression-based Metabolite Centrality Analysis Tool (GEMCAT). GEMCAT enables integration of transcriptomics or proteomics data to predict changes in metabolite concentrations, which can be verified by targeted metabolomics. In addition, GEMCAT allows to trace measured and predicted metabolic changes back to the underlying alterations in gene expression or proteomics and thus enables functional interpretation and integration of multi-omics data. We demonstrate the predictive capacity of GEMCAT on three datasets and genome-scale metabolic networks from two different organisms: (i) we integrated transcriptomics and metabolomics data from an engineered human cell line with a functional deletion of the mitochondrial NAD transporter; (ii) we used a large multi-tissue multi-omics dataset from rats for transcriptome- and proteome-based prediction and verification of training-induced metabolic changes and achieved an average prediction accuracy of 70%; and (iii) we used proteomics measurements from patients with inflammatory bowel disease and verified the predicted changes using metabolomics data from the same patients. For this dataset, the prediction accuracy achieved by GEMCAT was 79%.

基于基因表达预测代谢改变的新算法。
对高通量方法获得的多组学数据集的解释对于了解疾病相关的生理变化和预测体液中的生物标志物非常重要。我们提出了一种新的以代谢物为中心的基因组尺度代谢建模算法,基于基因表达的代谢物中心性分析工具(GEMCAT)。GEMCAT可以整合转录组学或蛋白质组学数据来预测代谢物浓度的变化,这可以通过靶向代谢组学进行验证。此外,GEMCAT允许将测量和预测的代谢变化追溯到基因表达或蛋白质组学的潜在改变,从而实现多组学数据的功能解释和整合。我们证明了GEMCAT对来自两种不同生物体的三个数据集和基因组级代谢网络的预测能力:(i)我们整合了来自线粒体NAD转运蛋白功能性缺失的工程人类细胞系的转录组学和代谢组学数据;(ii)我们使用了来自大鼠的大型多组织多组学数据集,用于基于转录组和蛋白质组的训练诱导代谢变化预测和验证,平均预测准确率为70%;(iii)我们使用来自炎症性肠病患者的蛋白质组学测量,并使用来自同一患者的代谢组学数据验证预测的变化。对于该数据集,GEMCAT实现的预测精度为79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信