Applying auxiliary supervised depth-assisted transformer and cross modal attention fusion in monocular 3D object detection.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2656
Zhijian Wang, Jie Liu, Yixiao Sun, Xiang Zhou, Boyan Sun, Dehong Kong, Jay Xu, Xiaoping Yue, Wenyu Zhang
{"title":"Applying auxiliary supervised depth-assisted transformer and cross modal attention fusion in monocular 3D object detection.","authors":"Zhijian Wang, Jie Liu, Yixiao Sun, Xiang Zhou, Boyan Sun, Dehong Kong, Jay Xu, Xiaoping Yue, Wenyu Zhang","doi":"10.7717/peerj-cs.2656","DOIUrl":null,"url":null,"abstract":"<p><p>Monocular 3D object detection is the most widely applied and challenging solution for autonomous driving, due to 2D images lacking 3D information. Existing methods are limited by inaccurate depth estimations by inequivalent supervised targets. The use of both depth and visual features also faces problems of heterogeneous fusion. In this article, we propose Depth Detection Transformer (Depth-DETR), applying auxiliary supervised depth-assisted transformer and cross modal attention fusion in monocular 3D object detection. Depth-DETR introduces two additional depth encoders besides the visual encoder. Two depth encoders are supervised by ground truth depth and bounding box respectively, working independently to complement each other's limitations and predicting more accurate target distances. Furthermore, Depth-DETR employs cross modal attention mechanisms to effectively fuse three different features. A parallel structure of two cross modal transformer is applied to fuse two depth features with visual features. Avoiding early fusion between two depth features enhances the final fused feature for better feature representations. Through multiple experimental validations, the Depth-DETR model has achieved highly competitive results in the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset, with an AP score of 17.49, representing its outstanding performance in 3D object detection.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2656"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784746/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2656","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Monocular 3D object detection is the most widely applied and challenging solution for autonomous driving, due to 2D images lacking 3D information. Existing methods are limited by inaccurate depth estimations by inequivalent supervised targets. The use of both depth and visual features also faces problems of heterogeneous fusion. In this article, we propose Depth Detection Transformer (Depth-DETR), applying auxiliary supervised depth-assisted transformer and cross modal attention fusion in monocular 3D object detection. Depth-DETR introduces two additional depth encoders besides the visual encoder. Two depth encoders are supervised by ground truth depth and bounding box respectively, working independently to complement each other's limitations and predicting more accurate target distances. Furthermore, Depth-DETR employs cross modal attention mechanisms to effectively fuse three different features. A parallel structure of two cross modal transformer is applied to fuse two depth features with visual features. Avoiding early fusion between two depth features enhances the final fused feature for better feature representations. Through multiple experimental validations, the Depth-DETR model has achieved highly competitive results in the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset, with an AP score of 17.49, representing its outstanding performance in 3D object detection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信