Udumbara M. Rathnayake , Junya Wada , Vanessa E. Wall , Jane Jones , Lisa M. Jenkins , Amy H. Andreotti , Lawrence E. Samelson
{"title":"Purification and characterization of full-length monomeric TEC family kinase, ITK","authors":"Udumbara M. Rathnayake , Junya Wada , Vanessa E. Wall , Jane Jones , Lisa M. Jenkins , Amy H. Andreotti , Lawrence E. Samelson","doi":"10.1016/j.pep.2025.106682","DOIUrl":null,"url":null,"abstract":"<div><div>An early step in the activation of T cells via the T cell antigen receptor is the phosphorylation and activation of phospholipase C-γ1 (PLC-γ1) by the TEC family tyrosine kinase, interleukin-2 (IL-2) inducible T cell kinase (ITK). PLC-γ1 activation occurs within a multi-protein complex comprised of the enzymes ITK, PLC-γ1, and VAV, and the adapter molecules, LAT, Gads, SLP-76, and NCK. Studies of ITK activation and the role of this heptameric complex in regulating ITK activation and function have not been possible due to the lack of success in the expression and purification of full-length, monomeric ITK protein. In this study, we have produced soluble full-length wild-type ITK protein by co-expressing an N-terminal solubility-tagged ITK construct with a kinase-specific co-chaperone CDC37 in an insect cell line. Although the majority of the purified ITK protein is oligomerized, there is a 13-fold increase in the yield of monomeric protein production compared to the last reported purification. Previous studies suggest that the ITK oligomerization is mediated by intermolecular interactions. We created several mutants to disrupt these self-associations. Expression of one of these, the C96E/T110I mutant, produced 20 times more monomer than the wild-type construct. The <em>in vitro</em> characterization of these protein constructs showed that the purified protein is stable and functional. This successful purification and <em>in vitro</em> characterization of full-length monomeric ITK protein will aid in understanding the mechanism by which ITK is recruited into the heptameric complex and is enabled to phosphorylate and activate PLC-γ1.</div></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"229 ","pages":"Article 106682"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592825000245","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
An early step in the activation of T cells via the T cell antigen receptor is the phosphorylation and activation of phospholipase C-γ1 (PLC-γ1) by the TEC family tyrosine kinase, interleukin-2 (IL-2) inducible T cell kinase (ITK). PLC-γ1 activation occurs within a multi-protein complex comprised of the enzymes ITK, PLC-γ1, and VAV, and the adapter molecules, LAT, Gads, SLP-76, and NCK. Studies of ITK activation and the role of this heptameric complex in regulating ITK activation and function have not been possible due to the lack of success in the expression and purification of full-length, monomeric ITK protein. In this study, we have produced soluble full-length wild-type ITK protein by co-expressing an N-terminal solubility-tagged ITK construct with a kinase-specific co-chaperone CDC37 in an insect cell line. Although the majority of the purified ITK protein is oligomerized, there is a 13-fold increase in the yield of monomeric protein production compared to the last reported purification. Previous studies suggest that the ITK oligomerization is mediated by intermolecular interactions. We created several mutants to disrupt these self-associations. Expression of one of these, the C96E/T110I mutant, produced 20 times more monomer than the wild-type construct. The in vitro characterization of these protein constructs showed that the purified protein is stable and functional. This successful purification and in vitro characterization of full-length monomeric ITK protein will aid in understanding the mechanism by which ITK is recruited into the heptameric complex and is enabled to phosphorylate and activate PLC-γ1.
期刊介绍:
Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.