Microsatellite-Stable Gastric Cancer Can be Classified into 2 Molecular Subtypes with Different Immunotherapy Response and Prognosis Based on Gene Sequencing and Computational Pathology

IF 5.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Zhiyi Ye , Xiaoyang Wu , Zheng Wei , Qiuyan Sun , Yanli Wang , Tan Li , Yuan Yuan , Jingjing Jing
{"title":"Microsatellite-Stable Gastric Cancer Can be Classified into 2 Molecular Subtypes with Different Immunotherapy Response and Prognosis Based on Gene Sequencing and Computational Pathology","authors":"Zhiyi Ye ,&nbsp;Xiaoyang Wu ,&nbsp;Zheng Wei ,&nbsp;Qiuyan Sun ,&nbsp;Yanli Wang ,&nbsp;Tan Li ,&nbsp;Yuan Yuan ,&nbsp;Jingjing Jing","doi":"10.1016/j.labinv.2025.104101","DOIUrl":null,"url":null,"abstract":"<div><div>Most patients with gastric cancer (GC) exhibit microsatellite stability, yet comprehensive subtyping for prognostic prediction and clinical treatment decisions for microsatellite-stable GC is lacking. In this work, RNA-sequencing gene expression data and clinical information of patients with microsatellite-stable GC were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. We employed several machine learning methods to develop and validate a signature based on immune-related genes (IRGs) for subtyping patients with microsatellite-stable GC. Moreover, 2 deep learning models based on the Vision Transformer (ViT) architecture were developed to predict GC tumor tiles and identify microsatellite-stable GC subtypes from digital pathology slides. Microsatellite status was evaluated by immunohistochemistry, and prognostic data as well as hematoxylin and eosin whole-slide images were collected from 105 patients with microsatellite-stable GC to serve as an independent validation cohort. A signature comprising 5 IRGs was established and validated, stratifying patients with microsatellite-stable GC into high-risk (microsatellite-stable-HR) and low-risk (microsatellite-stable-LR) groups. This signature demonstrated consistent performance, with areas under the receiver operating characteristic curve (AUC) of 0.65, 0.70, and 0.70 at 1, 3, and 5 years in the TCGA cohort, and 0.70, 0.60, and 0.62 in the GEO cohort, respectively. The microsatellite-stable-HR subtype exhibited higher levels of tumor immune dysfunction and exclusion, suggesting a greater potential for immune escape compared with the microsatellite-stable-LR subtype. Moreover, the microsatellite-stable-HR/LR subtypes showed differential sensitivities to various therapeutic drugs. Leveraging morphologic differences, the tumor recognition segmentation model achieved an impressive AUC of 0.97, whereas the microsatellite-stable-HR/LR identification model effectively classified microsatellite-stable-HR/LR subtypes with an AUC of 0.94. Both models demonstrated promising results in classifying patients with microsatellite-stable GC in the external validation cohort, highlighting the strong ability to accurately differentiate between microsatellite-stable GC subtypes. The IRG-related microsatellite-stable-HR/LR subtypes had the potential to enhance outcome prediction accuracy and guide treatment strategies. This research may optimize precision treatment and improve the prognosis for patients with microsatellite-stable GC.</div></div>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":"105 4","pages":"Article 104101"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002368372500011X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Most patients with gastric cancer (GC) exhibit microsatellite stability, yet comprehensive subtyping for prognostic prediction and clinical treatment decisions for microsatellite-stable GC is lacking. In this work, RNA-sequencing gene expression data and clinical information of patients with microsatellite-stable GC were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. We employed several machine learning methods to develop and validate a signature based on immune-related genes (IRGs) for subtyping patients with microsatellite-stable GC. Moreover, 2 deep learning models based on the Vision Transformer (ViT) architecture were developed to predict GC tumor tiles and identify microsatellite-stable GC subtypes from digital pathology slides. Microsatellite status was evaluated by immunohistochemistry, and prognostic data as well as hematoxylin and eosin whole-slide images were collected from 105 patients with microsatellite-stable GC to serve as an independent validation cohort. A signature comprising 5 IRGs was established and validated, stratifying patients with microsatellite-stable GC into high-risk (microsatellite-stable-HR) and low-risk (microsatellite-stable-LR) groups. This signature demonstrated consistent performance, with areas under the receiver operating characteristic curve (AUC) of 0.65, 0.70, and 0.70 at 1, 3, and 5 years in the TCGA cohort, and 0.70, 0.60, and 0.62 in the GEO cohort, respectively. The microsatellite-stable-HR subtype exhibited higher levels of tumor immune dysfunction and exclusion, suggesting a greater potential for immune escape compared with the microsatellite-stable-LR subtype. Moreover, the microsatellite-stable-HR/LR subtypes showed differential sensitivities to various therapeutic drugs. Leveraging morphologic differences, the tumor recognition segmentation model achieved an impressive AUC of 0.97, whereas the microsatellite-stable-HR/LR identification model effectively classified microsatellite-stable-HR/LR subtypes with an AUC of 0.94. Both models demonstrated promising results in classifying patients with microsatellite-stable GC in the external validation cohort, highlighting the strong ability to accurately differentiate between microsatellite-stable GC subtypes. The IRG-related microsatellite-stable-HR/LR subtypes had the potential to enhance outcome prediction accuracy and guide treatment strategies. This research may optimize precision treatment and improve the prognosis for patients with microsatellite-stable GC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Laboratory Investigation
Laboratory Investigation 医学-病理学
CiteScore
8.30
自引率
0.00%
发文量
125
审稿时长
2 months
期刊介绍: Laboratory Investigation is an international journal owned by the United States and Canadian Academy of Pathology. Laboratory Investigation offers prompt publication of high-quality original research in all biomedical disciplines relating to the understanding of human disease and the application of new methods to the diagnosis of disease. Both human and experimental studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信