NLP for Analyzing Electronic Health Records and Clinical Notes in Cancer Research: A Review

IF 3.2 2区 医学 Q2 CLINICAL NEUROLOGY
Muhammad Bilal PhD , Ameer Hamza MS , Nadia Malik MS
{"title":"NLP for Analyzing Electronic Health Records and Clinical Notes in Cancer Research: A Review","authors":"Muhammad Bilal PhD ,&nbsp;Ameer Hamza MS ,&nbsp;Nadia Malik MS","doi":"10.1016/j.jpainsymman.2025.01.019","DOIUrl":null,"url":null,"abstract":"<div><div>This review examines the application of natural language processing (NLP) techniques in cancer research using electronic health records (EHRs) and clinical notes. It addresses gaps in existing literature by providing a broader perspective than previous studies focused on specific cancer types or applications. A comprehensive literature search in the Scopus database identified 94 relevant studies published between 2019 and 2024. The analysis revealed a growing trend in NLP applications for cancer research, with information extraction (47 studies) and text classification (40 studies) emerging as predominant NLP tasks, followed by named entity recognition (7 studies). Among cancer types, breast, lung, and colorectal cancers were found to be the most studied. A significant shift from rule-based and traditional machine learning approaches to advanced deep learning techniques and transformer-based models was observed. It was found that dataset sizes used in existing studies varied widely, ranging from small, manually annotated datasets to large-scale EHRs. The review highlighted key challenges, including the limited generalizability of proposed solutions and the need for improved integration into clinical workflows. While NLP techniques show significant potential in analyzing EHRs and clinical notes for cancer research, future work should focus on improving model generalizability, enhancing robustness in handling complex clinical language, and expanding applications to understudied cancer types. The integration of NLP tools into palliative medicine and addressing ethical considerations remain crucial for utilizing the full potential of NLP in enhancing cancer diagnosis, treatment, and patient outcomes. This review provides valuable insights into the current state and future directions of NLP applications in cancer research.</div></div>","PeriodicalId":16634,"journal":{"name":"Journal of pain and symptom management","volume":"69 5","pages":"Pages e374-e394"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pain and symptom management","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885392425000375","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review examines the application of natural language processing (NLP) techniques in cancer research using electronic health records (EHRs) and clinical notes. It addresses gaps in existing literature by providing a broader perspective than previous studies focused on specific cancer types or applications. A comprehensive literature search in the Scopus database identified 94 relevant studies published between 2019 and 2024. The analysis revealed a growing trend in NLP applications for cancer research, with information extraction (47 studies) and text classification (40 studies) emerging as predominant NLP tasks, followed by named entity recognition (7 studies). Among cancer types, breast, lung, and colorectal cancers were found to be the most studied. A significant shift from rule-based and traditional machine learning approaches to advanced deep learning techniques and transformer-based models was observed. It was found that dataset sizes used in existing studies varied widely, ranging from small, manually annotated datasets to large-scale EHRs. The review highlighted key challenges, including the limited generalizability of proposed solutions and the need for improved integration into clinical workflows. While NLP techniques show significant potential in analyzing EHRs and clinical notes for cancer research, future work should focus on improving model generalizability, enhancing robustness in handling complex clinical language, and expanding applications to understudied cancer types. The integration of NLP tools into palliative medicine and addressing ethical considerations remain crucial for utilizing the full potential of NLP in enhancing cancer diagnosis, treatment, and patient outcomes. This review provides valuable insights into the current state and future directions of NLP applications in cancer research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
6.40%
发文量
821
审稿时长
26 days
期刊介绍: The Journal of Pain and Symptom Management is an internationally respected, peer-reviewed journal and serves an interdisciplinary audience of professionals by providing a forum for the publication of the latest clinical research and best practices related to the relief of illness burden among patients afflicted with serious or life-threatening illness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信