Effects of coding variants in the glucokinase regulatory protein gene on hepatic glucose and triglyceride metabolism suggest a gene regulatory function of glucokinase

IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Sara Langer , David Jagdhuhn , Rica Waterstradt , Jessica Gromoll , Michael Müller , Matthew G. Rees , Anna L. Gloyn , Simone Baltrusch
{"title":"Effects of coding variants in the glucokinase regulatory protein gene on hepatic glucose and triglyceride metabolism suggest a gene regulatory function of glucokinase","authors":"Sara Langer ,&nbsp;David Jagdhuhn ,&nbsp;Rica Waterstradt ,&nbsp;Jessica Gromoll ,&nbsp;Michael Müller ,&nbsp;Matthew G. Rees ,&nbsp;Anna L. Gloyn ,&nbsp;Simone Baltrusch","doi":"10.1016/j.metabol.2025.156150","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Regulation of glucose metabolism after a meal is the major task of hepatic glucokinase (GCK). Inhibition and nuclear retention of glucokinase during fasting is achieved by glucokinase regulatory protein (GKRP). Compounds disrupting the GCK-GKRP interaction alter glucose but not triglyceride levels, whilst GKRP coding alleles lower glucose but elevate triglycerides. The aim of this study was to identify yet unknown functions of GKRP by examining human variants both rare (p.Q234P, p.H438Y) and common (p.P446L).</div></div><div><h3>Methods</h3><div>Fluorescently labelled human GKRP variant and GCK proteins were expressed in hepatoma cells or primary mouse hepatocytes to investigate the subcellular localization of both proteins, cellular glucose uptake, and triglyceride levels. Mutational effects on GKRP protein structure were analyzed with PyMOL. Nuclear-to-cytoplasmic distribution of the GCK-GKRP complex was modeled in MATLAB.</div></div><div><h3>Results</h3><div>Nuclear localization of the GKRP variants was decreased compared to wild-type. Only H438Y-GKRP still evoked WT-like GCK nuclear accumulation. Nuclear localization of Q234P-GKRP was most impaired and depended on the presence of GCK, which, supported by structural analyses, could stabilize its conformation. Nonetheless, inhibition of glucose uptake was least impaired with Q234P-GKRP. Triglyceride contents related to the glucose uptake of hepatoma cells were disproportionately high for cells expressing wild-type or H438Y-GKRP, the two variants that induced higher nuclear sequestration of GCK.</div></div><div><h3>Conclusions</h3><div>Our results, supported by a modeling approach, suggest that GKRP-mediated nuclear localization of GCK has a function in liver metabolism beyond GCK inhibition and sequestration. This needs further elucidation given that GKRP disruptors have been proposed for antihyperglycemic therapy.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"166 ","pages":"Article 156150"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049525000198","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Regulation of glucose metabolism after a meal is the major task of hepatic glucokinase (GCK). Inhibition and nuclear retention of glucokinase during fasting is achieved by glucokinase regulatory protein (GKRP). Compounds disrupting the GCK-GKRP interaction alter glucose but not triglyceride levels, whilst GKRP coding alleles lower glucose but elevate triglycerides. The aim of this study was to identify yet unknown functions of GKRP by examining human variants both rare (p.Q234P, p.H438Y) and common (p.P446L).

Methods

Fluorescently labelled human GKRP variant and GCK proteins were expressed in hepatoma cells or primary mouse hepatocytes to investigate the subcellular localization of both proteins, cellular glucose uptake, and triglyceride levels. Mutational effects on GKRP protein structure were analyzed with PyMOL. Nuclear-to-cytoplasmic distribution of the GCK-GKRP complex was modeled in MATLAB.

Results

Nuclear localization of the GKRP variants was decreased compared to wild-type. Only H438Y-GKRP still evoked WT-like GCK nuclear accumulation. Nuclear localization of Q234P-GKRP was most impaired and depended on the presence of GCK, which, supported by structural analyses, could stabilize its conformation. Nonetheless, inhibition of glucose uptake was least impaired with Q234P-GKRP. Triglyceride contents related to the glucose uptake of hepatoma cells were disproportionately high for cells expressing wild-type or H438Y-GKRP, the two variants that induced higher nuclear sequestration of GCK.

Conclusions

Our results, supported by a modeling approach, suggest that GKRP-mediated nuclear localization of GCK has a function in liver metabolism beyond GCK inhibition and sequestration. This needs further elucidation given that GKRP disruptors have been proposed for antihyperglycemic therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolism: clinical and experimental
Metabolism: clinical and experimental 医学-内分泌学与代谢
CiteScore
18.90
自引率
3.10%
发文量
310
审稿时长
16 days
期刊介绍: Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism. Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential. The journal addresses a range of topics, including: - Energy Expenditure and Obesity - Metabolic Syndrome, Prediabetes, and Diabetes - Nutrition, Exercise, and the Environment - Genetics and Genomics, Proteomics, and Metabolomics - Carbohydrate, Lipid, and Protein Metabolism - Endocrinology and Hypertension - Mineral and Bone Metabolism - Cardiovascular Diseases and Malignancies - Inflammation in metabolism and immunometabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信