AFMDD: Analyzing Functional Connectivity Feature of Major Depressive Disorder by Graph Neural Network-Based Model.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Yan Zhang, Xin Liu, Panrui Tang, Zuping Zhang
{"title":"AFMDD: Analyzing Functional Connectivity Feature of Major Depressive Disorder by Graph Neural Network-Based Model.","authors":"Yan Zhang, Xin Liu, Panrui Tang, Zuping Zhang","doi":"10.1089/cmb.2024.0505","DOIUrl":null,"url":null,"abstract":"<p><p>The extraction of biomarkers from functional connectivity (FC) in the brain is of great significance for the diagnosis of mental disorders. In recent years, with the development of deep learning, several methods have been proposed to assist in the diagnosis of depression and promote its automatic identification. However, these methods still have some limitations. The current approaches overlook the importance of subgraphs in brain graphs, resulting in low accuracy. Using these methods with low accuracy for FC analysis may lead to unreliable results. To address these issues, we have designed a graph neural network-based model called AFMDD, specifically for analyzing FC features of depression and depression identification. Through experimental validation, our model has demonstrated excellent performance in depression diagnosis, achieving an accuracy of 73.15%, surpassing many state-of-the-art methods. In our study, we conducted visual analysis of nodes and edges in the FC networks of depression and identified several novel FC features. Those findings may provide valuable clues for the development of biomarkers for the clinical diagnosis of depression.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0505","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The extraction of biomarkers from functional connectivity (FC) in the brain is of great significance for the diagnosis of mental disorders. In recent years, with the development of deep learning, several methods have been proposed to assist in the diagnosis of depression and promote its automatic identification. However, these methods still have some limitations. The current approaches overlook the importance of subgraphs in brain graphs, resulting in low accuracy. Using these methods with low accuracy for FC analysis may lead to unreliable results. To address these issues, we have designed a graph neural network-based model called AFMDD, specifically for analyzing FC features of depression and depression identification. Through experimental validation, our model has demonstrated excellent performance in depression diagnosis, achieving an accuracy of 73.15%, surpassing many state-of-the-art methods. In our study, we conducted visual analysis of nodes and edges in the FC networks of depression and identified several novel FC features. Those findings may provide valuable clues for the development of biomarkers for the clinical diagnosis of depression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信