CCN2 functions as a modulator of cell cycle regulation in human dermal fibroblasts

IF 3.6 3区 生物学 Q3 CELL BIOLOGY
Taihao Quan, Yuan Shao, Trupta Purohit, Yiou Jiang, Zhaoping Qin, Gary J. Fisher, Nathan H. Lents, Joseph J. Baldassare
{"title":"CCN2 functions as a modulator of cell cycle regulation in human dermal fibroblasts","authors":"Taihao Quan,&nbsp;Yuan Shao,&nbsp;Trupta Purohit,&nbsp;Yiou Jiang,&nbsp;Zhaoping Qin,&nbsp;Gary J. Fisher,&nbsp;Nathan H. Lents,&nbsp;Joseph J. Baldassare","doi":"10.1002/ccs3.70003","DOIUrl":null,"url":null,"abstract":"<p>CCN2 is widely regarded as a profibrotic factor involved in fibrotic disorders by regulating extracellular matrix (ECM). We report here that CCN2 functions as a critical cell cycle regulator in primary human dermal fibroblasts (HDFs). siRNA-mediated knockdown of CCN2 halted proliferation of primary HDFs, which was rescued by a siRNA-resistant CCN2 expression vector. Furthermore, CCN2 knockdown caused a significant accumulation of cells in G1/G0 phase and blocked entry into S-phase. Mechanistically, CCN2 knockdown blocked cyclin E and CDK4/cyclin D nuclear translocation, and abrogated CDK2 activity. Markedly, CCN2 translocated to the nucleus and co-localized with cyclin D1 upon cell cycle stimulation. Finally, we show that CCN2, a bona fide YAP/TAZ target gene, partially mediates YAP/TAZ-dependent proliferation of primary HDFs. These data provide evidence of a novel CCN2 function as a cell cycle regulator in primary HDFs proliferation, in addition to its known role in ECM regulation.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CCN2 is widely regarded as a profibrotic factor involved in fibrotic disorders by regulating extracellular matrix (ECM). We report here that CCN2 functions as a critical cell cycle regulator in primary human dermal fibroblasts (HDFs). siRNA-mediated knockdown of CCN2 halted proliferation of primary HDFs, which was rescued by a siRNA-resistant CCN2 expression vector. Furthermore, CCN2 knockdown caused a significant accumulation of cells in G1/G0 phase and blocked entry into S-phase. Mechanistically, CCN2 knockdown blocked cyclin E and CDK4/cyclin D nuclear translocation, and abrogated CDK2 activity. Markedly, CCN2 translocated to the nucleus and co-localized with cyclin D1 upon cell cycle stimulation. Finally, we show that CCN2, a bona fide YAP/TAZ target gene, partially mediates YAP/TAZ-dependent proliferation of primary HDFs. These data provide evidence of a novel CCN2 function as a cell cycle regulator in primary HDFs proliferation, in addition to its known role in ECM regulation.

Abstract Image

CCN2在人真皮成纤维细胞中发挥细胞周期调节的作用。
CCN2被广泛认为是一种通过调节细胞外基质(ECM)参与纤维化疾病的促纤维化因子。我们在这里报道,CCN2在原代人真皮成纤维细胞(HDFs)中作为关键的细胞周期调节剂发挥作用。sirna介导的CCN2敲除阻止了原代HDFs的增殖,这是由sirna抗性CCN2表达载体拯救的。此外,CCN2敲低导致G1/G0期细胞大量聚集,阻断进入s期。在机制上,CCN2敲低阻断了cyclin E和CDK4/cyclin D的核易位,并消除了CDK2的活性。明显地,CCN2在细胞周期刺激下易位到细胞核并与cyclin D1共定位。最后,我们发现CCN2,一个真正的YAP/TAZ靶基因,部分介导了YAP/TAZ依赖性原代HDFs的增殖。这些数据为CCN2在原代HDFs增殖中作为细胞周期调节剂的新功能提供了证据,除了它在ECM调节中的已知作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
4.90%
发文量
40
期刊介绍: The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies. Research manuscripts can be published under two different sections : In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research. In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信