{"title":"Exosomal <i>miR-375-3p</i> mediated lipid metabolism, ferritinophagy and CoQ-dependent pathway contributes to the ferroptosis of keratinocyte in SJS/TEN.","authors":"Chen Zhang, Pei Qiao, ChunYing Xiao, ZiPeng Cao, JiaoLing Chen, Hui Fang, JianKang Yang, ZeHua Kang, ErLe Dang, Shuai Shao, BingYu Pang, QingYang Li, ZhenLai Zhu, ShengXian Shen, Akito Hasegawa, Riichiro Abe, HongJiang Qiao, Gang Wang, Meng Fu","doi":"10.7150/ijbs.98592","DOIUrl":null,"url":null,"abstract":"<p><p>Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) manifest life-threatening cutaneous adverse drug reactions characterized by keratinocyte death. Previous studies have indicated that apoptosis and necroptosis are implicated in SJS/TEN pathogeneses. However, other forms of cell death involved in this process remain unidentified. Ferroptosis, cell death driven by iron-dependent lipid peroxidation, has been implicated in various human diseases. In this study, the identification of ferroptosis and the potential effects of ferroptosis on SJS/TEN were investigated. We demonstrated that the skin lesions and plasma of SJS/TEN patients show increased levels of lipid peroxidation and iron. The biomarkers of ferroptosis correlated positively with the disease severity in SJS/TEN patients. Besides, plasma exosomes derived from patients with SJS/TEN exhibited elevated levels of cellular oxidized polyunsaturated fatty acids (PUFAs) and phospholipids phosphatidylethanolamine (PE), the key phospholipids that drive cells towards ferroptotic death. <i>miR-375-3p</i>, enriched in plasma-derived exosomes from SJS/TEN patients, was observed reduce both ferritin heavy chain 1 (FTH1) and ferroptosis suppressor protein 1 (FSP1) expression. Parallelly, exosomal <i>miR-375-3p</i> overexpression increased the level of lipid peroxidation but decreased the coenzyme Q10 (CoQ10), thus enhancing the ferroptosis rate of keratinocyte. Above all, we concluded that ferritinophagy-mediated ferroptosis, lipid metabolism, and the FSP1-CoQ-dependent pathway in ferroptosis are critical mechanisms contributing to SJS/TEN. Targeting ferroptosis in keratinocyte may be a therapeutic strategy for preventing SJS/TEN in the future.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"21 3","pages":"1275-1293"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7150/ijbs.98592","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) manifest life-threatening cutaneous adverse drug reactions characterized by keratinocyte death. Previous studies have indicated that apoptosis and necroptosis are implicated in SJS/TEN pathogeneses. However, other forms of cell death involved in this process remain unidentified. Ferroptosis, cell death driven by iron-dependent lipid peroxidation, has been implicated in various human diseases. In this study, the identification of ferroptosis and the potential effects of ferroptosis on SJS/TEN were investigated. We demonstrated that the skin lesions and plasma of SJS/TEN patients show increased levels of lipid peroxidation and iron. The biomarkers of ferroptosis correlated positively with the disease severity in SJS/TEN patients. Besides, plasma exosomes derived from patients with SJS/TEN exhibited elevated levels of cellular oxidized polyunsaturated fatty acids (PUFAs) and phospholipids phosphatidylethanolamine (PE), the key phospholipids that drive cells towards ferroptotic death. miR-375-3p, enriched in plasma-derived exosomes from SJS/TEN patients, was observed reduce both ferritin heavy chain 1 (FTH1) and ferroptosis suppressor protein 1 (FSP1) expression. Parallelly, exosomal miR-375-3p overexpression increased the level of lipid peroxidation but decreased the coenzyme Q10 (CoQ10), thus enhancing the ferroptosis rate of keratinocyte. Above all, we concluded that ferritinophagy-mediated ferroptosis, lipid metabolism, and the FSP1-CoQ-dependent pathway in ferroptosis are critical mechanisms contributing to SJS/TEN. Targeting ferroptosis in keratinocyte may be a therapeutic strategy for preventing SJS/TEN in the future.
期刊介绍:
The International Journal of Biological Sciences is a peer-reviewed, open-access scientific journal published by Ivyspring International Publisher. It dedicates itself to publishing original articles, reviews, and short research communications across all domains of biological sciences.