Integrating ATAC-seq and RNA-seq to reveal the dynamics of chromatin accessibility and gene expression in regulating aril coloration of Taxus mairei.

IF 3.4 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yadan Yan, Yafeng Wen, Zejun Zhang, Jun Zhang, Xingtong Wu, Chuncheng Wang, Yanghui Zhao
{"title":"Integrating ATAC-seq and RNA-seq to reveal the dynamics of chromatin accessibility and gene expression in regulating aril coloration of Taxus mairei.","authors":"Yadan Yan, Yafeng Wen, Zejun Zhang, Jun Zhang, Xingtong Wu, Chuncheng Wang, Yanghui Zhao","doi":"10.1016/j.ygeno.2025.111011","DOIUrl":null,"url":null,"abstract":"<p><p>Fruit coloration results from a complex process. Maire yew (Taxus mairei) is an evergreen tree with red, purple, and yellow fruits (arils). While significant progress has been made in understanding pigment biosynthesis in arils, the role of chromatin accessibility in color development remains less well understood. To gain deeper insights into the genetic and epigenetic factors involved, we employed RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin sequencing (ATAC-seq). By integrating the results, we identified 723 differentially expressed genes (DEGs) with chromatin changes in P vs. R, including 312 up- and 411 down-regulated genes. In Y vs. R, we found 159 DEGs, with 97 up- and 62 down-regulated. KEGG enrichment analysis highlighted the flavonoid and carotenoid pathways as major contributors to color variation. When the arils turned purple, the expression levels of C4H, CHS, C3'H, F3'H, F3H, DFR, ANS, PSY, PDS, β-OHase, CYP97A3, and LUT1 were significantly up-regulated, while ZDS was down-regulated. The transition to yellow arils was characterized by the up-regulation of F3H, DFR, ANS, ZDS, CYP97A3, β-OHase, and LUT1, accompanied by the down-regulation of C4H, CHS, PSY, and PDS. Additionally, 27 transcription factors (TFs) were identified, including MYB, bHLH, and bZIP. These TFs may potentially influence variation in aril color by regulating downstream genes. In total, eight genes were selected for qRT-PCR validation, indicating the reliability of the transcriptome sequencing data. Our results provide in-depth information regarding the coloration of the arils in Maire yew. The study could provide insights for further genetic improvement in Taxus.</p>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":" ","pages":"111011"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ygeno.2025.111011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fruit coloration results from a complex process. Maire yew (Taxus mairei) is an evergreen tree with red, purple, and yellow fruits (arils). While significant progress has been made in understanding pigment biosynthesis in arils, the role of chromatin accessibility in color development remains less well understood. To gain deeper insights into the genetic and epigenetic factors involved, we employed RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin sequencing (ATAC-seq). By integrating the results, we identified 723 differentially expressed genes (DEGs) with chromatin changes in P vs. R, including 312 up- and 411 down-regulated genes. In Y vs. R, we found 159 DEGs, with 97 up- and 62 down-regulated. KEGG enrichment analysis highlighted the flavonoid and carotenoid pathways as major contributors to color variation. When the arils turned purple, the expression levels of C4H, CHS, C3'H, F3'H, F3H, DFR, ANS, PSY, PDS, β-OHase, CYP97A3, and LUT1 were significantly up-regulated, while ZDS was down-regulated. The transition to yellow arils was characterized by the up-regulation of F3H, DFR, ANS, ZDS, CYP97A3, β-OHase, and LUT1, accompanied by the down-regulation of C4H, CHS, PSY, and PDS. Additionally, 27 transcription factors (TFs) were identified, including MYB, bHLH, and bZIP. These TFs may potentially influence variation in aril color by regulating downstream genes. In total, eight genes were selected for qRT-PCR validation, indicating the reliability of the transcriptome sequencing data. Our results provide in-depth information regarding the coloration of the arils in Maire yew. The study could provide insights for further genetic improvement in Taxus.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genomics
Genomics 生物-生物工程与应用微生物
CiteScore
9.60
自引率
2.30%
发文量
260
审稿时长
60 days
期刊介绍: Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation. As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信