{"title":"Phantom-based investigation of block sequential regularised expectation maximisation (BSREM) reconstruction for zirconium-89 PET-CT for varied count levels.","authors":"Lara M Bonney, Matthew D Walker, Daniel R McGowan","doi":"10.1186/s40658-025-00722-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Zirconium-89 (Zr-89) PET tracers have become increasingly significant in the field of nuclear medicine due to their 3-day physical half-life, allowing for the study of dynamic biological processes over relatively long timeframes. To date there has been limited publication of studies focused on optimisation of acquisition parameters for Zr-89 PET. This paper outlines a short phantom study investigating the optimal beta regularization parameter for quantitation and noise in block sequential regularised expectation maximisation (BSREM) also known as Bayesian penalized likelihood (BPL) reconstruction, for varying image noise characteristics (acquisition duration).</p><p><strong>Results: </strong>The choice of the beta regularisation parameter substantially impacts image quality and quantitation. For larger volumes, BSREM reconstruction enhanced image quality (lower noise) and maintained quantitation, whereas for smaller volumes quantitation worsened as compared to OSEM for high regularisation parameters.</p><p><strong>Conclusion: </strong>Where BSREM reconstruction is used for Zr-89 images, careful attention must be paid to the choice of weighting factor, especially for quantitative clinical studies. The effect of varying beta on several measures of image quality was characterised for the case of a phantom, with the results indicating that the value of beta for optimal Zr-89 quantitation is lower than what is generally used for optimal visualisation. This work demonstrates the need for careful attention to the reconstruction methods used for quantitative imaging studies, such as those required for theragnostic imaging.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"12 1","pages":"10"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-025-00722-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Zirconium-89 (Zr-89) PET tracers have become increasingly significant in the field of nuclear medicine due to their 3-day physical half-life, allowing for the study of dynamic biological processes over relatively long timeframes. To date there has been limited publication of studies focused on optimisation of acquisition parameters for Zr-89 PET. This paper outlines a short phantom study investigating the optimal beta regularization parameter for quantitation and noise in block sequential regularised expectation maximisation (BSREM) also known as Bayesian penalized likelihood (BPL) reconstruction, for varying image noise characteristics (acquisition duration).
Results: The choice of the beta regularisation parameter substantially impacts image quality and quantitation. For larger volumes, BSREM reconstruction enhanced image quality (lower noise) and maintained quantitation, whereas for smaller volumes quantitation worsened as compared to OSEM for high regularisation parameters.
Conclusion: Where BSREM reconstruction is used for Zr-89 images, careful attention must be paid to the choice of weighting factor, especially for quantitative clinical studies. The effect of varying beta on several measures of image quality was characterised for the case of a phantom, with the results indicating that the value of beta for optimal Zr-89 quantitation is lower than what is generally used for optimal visualisation. This work demonstrates the need for careful attention to the reconstruction methods used for quantitative imaging studies, such as those required for theragnostic imaging.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.