{"title":"IDDMSLD: An image dataset for detecting Malabar spinach leaf diseases","authors":"Adnan Rahman Sayeem, Jannatul Ferdous Omi, Mehedi Hasan, Mayen Uddin Mojumdar, Narayan Ranjan Chakraborty","doi":"10.1016/j.dib.2025.111293","DOIUrl":null,"url":null,"abstract":"<div><div>Agriculture has always played a vital role in the economic development of Bangladesh. In Agriculture, leaf diseases have become an issue because they can lead to a major drop in both quality and quantity of crops. Therefore, leveraging technology to automatically detect diseases on leaves plays an important role in farming. Malabar Spinach (Basella alba) is a well-known, widely grown leafy vegetable, which is valued for its nutritional benefits. However, there is almost no dataset that can aid in identifying diseases affecting this important crop, which often leads to decreased quality as well as financial drawback. This lack of resources makes it difficult for farmers to recognize and manage common diseases. Our purpose is to solve this problem by creating a unique dataset of Bangladesh's Malabar Spinach leaves that will ease agricultural management and disease detection. Our dataset contains both healthy and diseased samples, categorised into four common ailments: Anthracnose, Bacterial Spot, Downy Mildew, and Pest Damage. We collected 3,006 original images in total. Images were collected from various locations in Bangladesh, including Mirpur, Savar, Sirajganj and Gazipur, with photographs taken under natural lighting conditions at different times of the day. This dataset will help the researchers for further research on Malabar Spinach disease detection implementing various efficient computational models and applying advanced machine learning techniques.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"58 ","pages":"Article 111293"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture has always played a vital role in the economic development of Bangladesh. In Agriculture, leaf diseases have become an issue because they can lead to a major drop in both quality and quantity of crops. Therefore, leveraging technology to automatically detect diseases on leaves plays an important role in farming. Malabar Spinach (Basella alba) is a well-known, widely grown leafy vegetable, which is valued for its nutritional benefits. However, there is almost no dataset that can aid in identifying diseases affecting this important crop, which often leads to decreased quality as well as financial drawback. This lack of resources makes it difficult for farmers to recognize and manage common diseases. Our purpose is to solve this problem by creating a unique dataset of Bangladesh's Malabar Spinach leaves that will ease agricultural management and disease detection. Our dataset contains both healthy and diseased samples, categorised into four common ailments: Anthracnose, Bacterial Spot, Downy Mildew, and Pest Damage. We collected 3,006 original images in total. Images were collected from various locations in Bangladesh, including Mirpur, Savar, Sirajganj and Gazipur, with photographs taken under natural lighting conditions at different times of the day. This dataset will help the researchers for further research on Malabar Spinach disease detection implementing various efficient computational models and applying advanced machine learning techniques.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.