IDDMSLD: An image dataset for detecting Malabar spinach leaf diseases

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Adnan Rahman Sayeem, Jannatul Ferdous Omi, Mehedi Hasan, Mayen Uddin Mojumdar, Narayan Ranjan Chakraborty
{"title":"IDDMSLD: An image dataset for detecting Malabar spinach leaf diseases","authors":"Adnan Rahman Sayeem,&nbsp;Jannatul Ferdous Omi,&nbsp;Mehedi Hasan,&nbsp;Mayen Uddin Mojumdar,&nbsp;Narayan Ranjan Chakraborty","doi":"10.1016/j.dib.2025.111293","DOIUrl":null,"url":null,"abstract":"<div><div>Agriculture has always played a vital role in the economic development of Bangladesh. In Agriculture, leaf diseases have become an issue because they can lead to a major drop in both quality and quantity of crops. Therefore, leveraging technology to automatically detect diseases on leaves plays an important role in farming. Malabar Spinach (Basella alba) is a well-known, widely grown leafy vegetable, which is valued for its nutritional benefits. However, there is almost no dataset that can aid in identifying diseases affecting this important crop, which often leads to decreased quality as well as financial drawback. This lack of resources makes it difficult for farmers to recognize and manage common diseases. Our purpose is to solve this problem by creating a unique dataset of Bangladesh's Malabar Spinach leaves that will ease agricultural management and disease detection. Our dataset contains both healthy and diseased samples, categorised into four common ailments: Anthracnose, Bacterial Spot, Downy Mildew, and Pest Damage. We collected 3,006 original images in total. Images were collected from various locations in Bangladesh, including Mirpur, Savar, Sirajganj and Gazipur, with photographs taken under natural lighting conditions at different times of the day. This dataset will help the researchers for further research on Malabar Spinach disease detection implementing various efficient computational models and applying advanced machine learning techniques.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"58 ","pages":"Article 111293"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Agriculture has always played a vital role in the economic development of Bangladesh. In Agriculture, leaf diseases have become an issue because they can lead to a major drop in both quality and quantity of crops. Therefore, leveraging technology to automatically detect diseases on leaves plays an important role in farming. Malabar Spinach (Basella alba) is a well-known, widely grown leafy vegetable, which is valued for its nutritional benefits. However, there is almost no dataset that can aid in identifying diseases affecting this important crop, which often leads to decreased quality as well as financial drawback. This lack of resources makes it difficult for farmers to recognize and manage common diseases. Our purpose is to solve this problem by creating a unique dataset of Bangladesh's Malabar Spinach leaves that will ease agricultural management and disease detection. Our dataset contains both healthy and diseased samples, categorised into four common ailments: Anthracnose, Bacterial Spot, Downy Mildew, and Pest Damage. We collected 3,006 original images in total. Images were collected from various locations in Bangladesh, including Mirpur, Savar, Sirajganj and Gazipur, with photographs taken under natural lighting conditions at different times of the day. This dataset will help the researchers for further research on Malabar Spinach disease detection implementing various efficient computational models and applying advanced machine learning techniques.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信