InTiCAR: Network-based identification of significant inter-tissue communicators for autoimmune diseases

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kwansoo Kim, Manyoung Han, Doheon Lee
{"title":"InTiCAR: Network-based identification of significant inter-tissue communicators for autoimmune diseases","authors":"Kwansoo Kim,&nbsp;Manyoung Han,&nbsp;Doheon Lee","doi":"10.1016/j.csbj.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>Inter-tissue communicators (ITCs) are intricate and essential aspects of our body, as they are the keepers of homeostatic equilibrium. It is no surprise that the dysregulation of the exchange between tissues are at the core of various disorders. Among such conditions, autoimmune diseases (AIDs) refer to a collection of pathological conditions where the miscommunication drives the immune system to mistakenly attack one's own body. Due to their myriad and diverse pathophysiologies, AIDs cannot be easily diagnosed or treated, and continuous efforts are required to seek for potential diagnostic markers or therapeutic targets. The identification of ITCs with significant involvement in the disease states is therefore crucial. Here, we present InTiCAR, <u>In</u>ter-<u>Ti</u>ssue <u>C</u>ommunicators for <u>A</u>utoimmune diseases by <u>R</u>andom walk with restart, which is a network exploration-based analysis method that suggests disease-specific ITCs based on prior knowledge of disease genes, without the need for the external expression data. We first show that distinct ITC profile s can be acquired for various diseases by InTiCAR. We further illustrate that, for autoimmune diseases (AIDs) specifically, the disease-specific ITCs outperform disease genes in diagnosing patients using the UK Biobank plasma proteome dataset. Also, through CMap LINCS dataset, we find that high perturbation on the AIDs genes can be observed by the disease-specific ITCs. Our results provide and highlight unique perspectives on biological network analysis by focusing on the entities of extracellular communications.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 333-345"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782887/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025000030","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inter-tissue communicators (ITCs) are intricate and essential aspects of our body, as they are the keepers of homeostatic equilibrium. It is no surprise that the dysregulation of the exchange between tissues are at the core of various disorders. Among such conditions, autoimmune diseases (AIDs) refer to a collection of pathological conditions where the miscommunication drives the immune system to mistakenly attack one's own body. Due to their myriad and diverse pathophysiologies, AIDs cannot be easily diagnosed or treated, and continuous efforts are required to seek for potential diagnostic markers or therapeutic targets. The identification of ITCs with significant involvement in the disease states is therefore crucial. Here, we present InTiCAR, Inter-Tissue Communicators for Autoimmune diseases by Random walk with restart, which is a network exploration-based analysis method that suggests disease-specific ITCs based on prior knowledge of disease genes, without the need for the external expression data. We first show that distinct ITC profile s can be acquired for various diseases by InTiCAR. We further illustrate that, for autoimmune diseases (AIDs) specifically, the disease-specific ITCs outperform disease genes in diagnosing patients using the UK Biobank plasma proteome dataset. Also, through CMap LINCS dataset, we find that high perturbation on the AIDs genes can be observed by the disease-specific ITCs. Our results provide and highlight unique perspectives on biological network analysis by focusing on the entities of extracellular communications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信