Ali Al-Fatlawi , Md. Ballal Hossen , Stella de Paula Lopes , A. Francis Stewart , Michael Schroeder
{"title":"A structural phylogenetic tree of Rad52 and its annealase superfamily","authors":"Ali Al-Fatlawi , Md. Ballal Hossen , Stella de Paula Lopes , A. Francis Stewart , Michael Schroeder","doi":"10.1016/j.csbj.2024.12.012","DOIUrl":null,"url":null,"abstract":"<div><div>Rad52, a highly conserved eukaryotic protein, plays a crucial role in DNA repair, particularly in double-strand break repair. Recent findings reveal that its distinct structural features, including a characteristic <em>β</em>-sheet and <em>β</em>-hairpin motif, are shared with the lambda phage single-strand annealing protein, Red<em>β</em>, and other prokaryotic single-strand annealing proteins (SSAPs), indicating a common superfamily. Our analysis of over 10,000 SSAPs across all domains of life supports this hypothesis, confirming the presence of the characteristic motif despite variations in size and composition. We found that archaea, representing only 1% of the studied proteins, exhibit most of these variations as reflected by their spread across the phylogenetic tree, whereas eukaryotes exhibit only Rad52. By examining four representative archaeal SSAPs, we elucidate the structural relationship between eukaryotic and bacterial SSAPs, highlighting differences in <em>β</em>-sheet size and <em>β</em>-hairpin complexity. Furthermore, we identify an archaeal SSAP with a predicted structure nearly identical to human Rad52. Together with a screen of over 100 million unannotated proteins for potential SSAP candidates, our computational analysis complements the existing sequence and structural evidence supporting orthology among five SSAP families: Rad52, Red<em>β</em>, RecT, Erf, and Sak3.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 360-368"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024004355","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rad52, a highly conserved eukaryotic protein, plays a crucial role in DNA repair, particularly in double-strand break repair. Recent findings reveal that its distinct structural features, including a characteristic β-sheet and β-hairpin motif, are shared with the lambda phage single-strand annealing protein, Redβ, and other prokaryotic single-strand annealing proteins (SSAPs), indicating a common superfamily. Our analysis of over 10,000 SSAPs across all domains of life supports this hypothesis, confirming the presence of the characteristic motif despite variations in size and composition. We found that archaea, representing only 1% of the studied proteins, exhibit most of these variations as reflected by their spread across the phylogenetic tree, whereas eukaryotes exhibit only Rad52. By examining four representative archaeal SSAPs, we elucidate the structural relationship between eukaryotic and bacterial SSAPs, highlighting differences in β-sheet size and β-hairpin complexity. Furthermore, we identify an archaeal SSAP with a predicted structure nearly identical to human Rad52. Together with a screen of over 100 million unannotated proteins for potential SSAP candidates, our computational analysis complements the existing sequence and structural evidence supporting orthology among five SSAP families: Rad52, Redβ, RecT, Erf, and Sak3.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology