Laying the groundwork: Exploring pesticide exposure and genetic factors in south-eastern Brazilian farmers

IF 2.9 Q2 TOXICOLOGY
Débora Dummer Meira , Victor Nogueira Da Gama Kohls , Matheus Correia Casotti , Luana Santos Louro , Gabriel Mendonça Santana , Thomas Erik Santos Louro , Adriana Madeira Alvares da Silva , Lorena Souza Castro Altoé , Raquel Reis Trabach , Sonia Groisman , Elizeu Fagundes de Carvalho , Jamila Alessandra Perini Machado , Stephanie Seneff , Iúri Drumond Louro
{"title":"Laying the groundwork: Exploring pesticide exposure and genetic factors in south-eastern Brazilian farmers","authors":"Débora Dummer Meira ,&nbsp;Victor Nogueira Da Gama Kohls ,&nbsp;Matheus Correia Casotti ,&nbsp;Luana Santos Louro ,&nbsp;Gabriel Mendonça Santana ,&nbsp;Thomas Erik Santos Louro ,&nbsp;Adriana Madeira Alvares da Silva ,&nbsp;Lorena Souza Castro Altoé ,&nbsp;Raquel Reis Trabach ,&nbsp;Sonia Groisman ,&nbsp;Elizeu Fagundes de Carvalho ,&nbsp;Jamila Alessandra Perini Machado ,&nbsp;Stephanie Seneff ,&nbsp;Iúri Drumond Louro","doi":"10.1016/j.crtox.2025.100215","DOIUrl":null,"url":null,"abstract":"<div><div>Brazil is the world leader in pesticide consumption, and its indiscriminate use puts farmers’ health at risk. The <em>CYP2C9</em> gene encodes the CYP2C9 enzyme, which metabolizes several endogenous substrates and specific xenobiotics, especially pesticides. Our goal is to study the risk of pesticide use, especially the herbicide glyphosate, in the development of diseases and the association with two <em>CYP2C9</em> polymorphisms, in farmers living in the southern region of Espírito Santo state, Brazil. The allelic frequency of <em>CYP2C9</em>*1, <em>CYP2C9</em>*2 and <em>CYP2C9</em>*3 was determined in blood samples from individuals exposed or not to pesticides using real-time PCR. 304 blood samples were analyzed, dividing <em>CYP2C9</em> genotypes into three metabolization classes: normal, intermediate, and slow. Our results indicate that normal metabolizers may be more susceptible to conditions such as high blood pressure, cardiovascular disease, and kidney problems. Intermediate metabolizers show an association with attention deficit disorder and miscarriages, suggesting that farmers’ symptoms correlated with their <em>CYP2C9</em> genotype. Insufficient data prevented conclusions about slow metabolizers (*2 and/or *3). These findings suggest that the <em>CYP2C9</em> genotype may influence the way farmers exposed to pesticides respond, but more research is needed to clarify causality and investigate other possible health effects. As an introductory effort, this study provides insights into the complex relationship between genetic variations and pesticide exposure, laying the groundwork for future research. This pioneering work on associations between specific genetic variations and health risks with pesticide exposure, emphasizes the importance of personalized medicine and stricter regulation of pesticide use for public health and occupational safety.</div></div>","PeriodicalId":11236,"journal":{"name":"Current Research in Toxicology","volume":"8 ","pages":"Article 100215"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666027X25000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Brazil is the world leader in pesticide consumption, and its indiscriminate use puts farmers’ health at risk. The CYP2C9 gene encodes the CYP2C9 enzyme, which metabolizes several endogenous substrates and specific xenobiotics, especially pesticides. Our goal is to study the risk of pesticide use, especially the herbicide glyphosate, in the development of diseases and the association with two CYP2C9 polymorphisms, in farmers living in the southern region of Espírito Santo state, Brazil. The allelic frequency of CYP2C9*1, CYP2C9*2 and CYP2C9*3 was determined in blood samples from individuals exposed or not to pesticides using real-time PCR. 304 blood samples were analyzed, dividing CYP2C9 genotypes into three metabolization classes: normal, intermediate, and slow. Our results indicate that normal metabolizers may be more susceptible to conditions such as high blood pressure, cardiovascular disease, and kidney problems. Intermediate metabolizers show an association with attention deficit disorder and miscarriages, suggesting that farmers’ symptoms correlated with their CYP2C9 genotype. Insufficient data prevented conclusions about slow metabolizers (*2 and/or *3). These findings suggest that the CYP2C9 genotype may influence the way farmers exposed to pesticides respond, but more research is needed to clarify causality and investigate other possible health effects. As an introductory effort, this study provides insights into the complex relationship between genetic variations and pesticide exposure, laying the groundwork for future research. This pioneering work on associations between specific genetic variations and health risks with pesticide exposure, emphasizes the importance of personalized medicine and stricter regulation of pesticide use for public health and occupational safety.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Toxicology
Current Research in Toxicology Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
4.70
自引率
3.00%
发文量
33
审稿时长
82 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信