Micellar Solvent Accessibility of Esterified Polyoxyethylene Chains as Crucial Element of Polysorbate Oxidation: A Density Functional Theory, Molecular Dynamics Simulation and Liquid Chromatography/Mass Spectrometry Investigation.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Johanna Weber, Leonardo Pedri, Luis P Peters, Patrick K Quoika, Dennis F Dinu, Klaus R Liedl, Christofer S Tautermann, Tim Diederichs, Patrick Garidel
{"title":"Micellar Solvent Accessibility of Esterified Polyoxyethylene Chains as Crucial Element of Polysorbate Oxidation: A Density Functional Theory, Molecular Dynamics Simulation and Liquid Chromatography/Mass Spectrometry Investigation.","authors":"Johanna Weber, Leonardo Pedri, Luis P Peters, Patrick K Quoika, Dennis F Dinu, Klaus R Liedl, Christofer S Tautermann, Tim Diederichs, Patrick Garidel","doi":"10.1021/acs.molpharmaceut.4c01015","DOIUrl":null,"url":null,"abstract":"<p><p>Given that the amphiphilicity of polysorbates represents a key factor in the protection of proteins from particle formation, the loss of this property through degradative processes is a significant concern. Therefore, the present study sought to identify the factors that contribute to the oxidative cleavage of the polysorbate (PS) molecule and to ascertain the preferred sites of degradation. In order to gain insight into the radical susceptibility of the individual polysorbate segments and their accessibility to water, conceptual density functional theory calculations and molecular dynamics simulations were performed. The behavior of monoesters and diesters was examined in both monomer form and within the context of micelles. The theoretical results were corroborated by experimental findings, wherein polysorbate 20 was subjected to 50 ppb Fe<sup>2+</sup> and 100,000 lx·h of visible light, and subsequently stored at 25 °C/60% r.h. or 40 °C/75% r.h. for a period of 3 months. Molecular dynamics simulations demonstrated that unesterified polyoxyethylene(POE) chains within a polysorbate 20 molecule exhibited the greatest water accessibility, indicating their heightened susceptibility to oxidation. Nevertheless, the oxidative cleavage of esterified polyoxyethylene chains of a polysorbate 20 molecule is highly detrimental to the protective effect on protein particle formation. This occurs presumably at the oxyethylene (OE) units in the vicinity of the sorbitan ring, leaving a nonamphiphilic molecule in the worst case. Consequently, the critical degradation sites were identified, resulting in the formation of degradation products that indicate a loss of amphiphilicity in PS.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01015","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Given that the amphiphilicity of polysorbates represents a key factor in the protection of proteins from particle formation, the loss of this property through degradative processes is a significant concern. Therefore, the present study sought to identify the factors that contribute to the oxidative cleavage of the polysorbate (PS) molecule and to ascertain the preferred sites of degradation. In order to gain insight into the radical susceptibility of the individual polysorbate segments and their accessibility to water, conceptual density functional theory calculations and molecular dynamics simulations were performed. The behavior of monoesters and diesters was examined in both monomer form and within the context of micelles. The theoretical results were corroborated by experimental findings, wherein polysorbate 20 was subjected to 50 ppb Fe2+ and 100,000 lx·h of visible light, and subsequently stored at 25 °C/60% r.h. or 40 °C/75% r.h. for a period of 3 months. Molecular dynamics simulations demonstrated that unesterified polyoxyethylene(POE) chains within a polysorbate 20 molecule exhibited the greatest water accessibility, indicating their heightened susceptibility to oxidation. Nevertheless, the oxidative cleavage of esterified polyoxyethylene chains of a polysorbate 20 molecule is highly detrimental to the protective effect on protein particle formation. This occurs presumably at the oxyethylene (OE) units in the vicinity of the sorbitan ring, leaving a nonamphiphilic molecule in the worst case. Consequently, the critical degradation sites were identified, resulting in the formation of degradation products that indicate a loss of amphiphilicity in PS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信