Effect of pH and Buffer Capacity of Physiological Bicarbonate Buffer on Precipitation of Drugs.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Pharmaceutics Pub Date : 2025-03-03 Epub Date: 2025-02-02 DOI:10.1021/acs.molpharmaceut.4c00996
Hibiki Yamamoto, Kiyohiko Sugano
{"title":"Effect of pH and Buffer Capacity of Physiological Bicarbonate Buffer on Precipitation of Drugs.","authors":"Hibiki Yamamoto, Kiyohiko Sugano","doi":"10.1021/acs.molpharmaceut.4c00996","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to investigate the effect of the pH and buffer capacity (β) of physiological bicarbonate buffer solutions (BCB) on drug precipitation. The precipitation profiles of poorly soluble drugs in BCB were evaluated by using a pH-shift precipitation test. Phosphate buffer solutions (PPB) were used for comparison. Two weakly acidic drugs (p<i>K</i><sub>a</sub>: 4.9 and 7.0) and two weakly basic drugs (p<i>K</i><sub>a</sub>: 6.1 and 8.3) were used as model drugs. The bulk phase pH value (pH<sub>bulk</sub>) and β values were set to cover the physiological range in the small intestines (pH: 5.5 to 7.5, β: 2.2 to 17.6 mM/ΔpH). A floating lid was used to maintain the pH<sub>bulk</sub> of BCB to avoid CO<sub>2</sub> loss. It was also applied to PPB to align the experimental conditions. Each drug was completely dissolved in HCl (pH 3.0, for weakly basic drugs) or NaOH (pH 11.0, for weakly acidic drugs) solutions (450 mL, 50 rpm, 37 °C). The pH<sub>bulk</sub> value was then shifted to the neutral pH region by adding a 10-fold concentrated buffer solution (50 mL, final volume of 500 mL). The initial total drug concentration (neutral + ionized species) was set so that the concentration and supersaturation ratio of the neutral species were the same under all pH<sub>bulk</sub> conditions. The solid forms of the precipitates were determined by powder X-ray diffraction and differential scanning calorimetry. In BCB, as pH<sub>bulk</sub> was increased above (for weakly acidic drugs) or decreased below (for weakly basic drugs) the drug p<i>K</i><sub><i>a</i></sub> value, the precipitation of the free form solid became slower. As β was increased, drug precipitation in BCB became faster. Drug precipitation in PPB was faster than that in BCB and less affected by pH<sub>bulk</sub> and β. In BCB, at pH<sub>bulk</sub> at which a drug is ionizable, the surface pH of the precipitating particles can differ from pH<sub>bulk</sub> because of the slow hydration process of CO<sub>2</sub>. In conclusion, pH<sub>bulk</sub> and β affected the precipitation of weakly acidic and basic drugs in BCB. As BCB is a physiological buffer in the small intestine, it should be used for precipitation studies of weakly acidic and basic drugs.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"1318-1328"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00996","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study was to investigate the effect of the pH and buffer capacity (β) of physiological bicarbonate buffer solutions (BCB) on drug precipitation. The precipitation profiles of poorly soluble drugs in BCB were evaluated by using a pH-shift precipitation test. Phosphate buffer solutions (PPB) were used for comparison. Two weakly acidic drugs (pKa: 4.9 and 7.0) and two weakly basic drugs (pKa: 6.1 and 8.3) were used as model drugs. The bulk phase pH value (pHbulk) and β values were set to cover the physiological range in the small intestines (pH: 5.5 to 7.5, β: 2.2 to 17.6 mM/ΔpH). A floating lid was used to maintain the pHbulk of BCB to avoid CO2 loss. It was also applied to PPB to align the experimental conditions. Each drug was completely dissolved in HCl (pH 3.0, for weakly basic drugs) or NaOH (pH 11.0, for weakly acidic drugs) solutions (450 mL, 50 rpm, 37 °C). The pHbulk value was then shifted to the neutral pH region by adding a 10-fold concentrated buffer solution (50 mL, final volume of 500 mL). The initial total drug concentration (neutral + ionized species) was set so that the concentration and supersaturation ratio of the neutral species were the same under all pHbulk conditions. The solid forms of the precipitates were determined by powder X-ray diffraction and differential scanning calorimetry. In BCB, as pHbulk was increased above (for weakly acidic drugs) or decreased below (for weakly basic drugs) the drug pKa value, the precipitation of the free form solid became slower. As β was increased, drug precipitation in BCB became faster. Drug precipitation in PPB was faster than that in BCB and less affected by pHbulk and β. In BCB, at pHbulk at which a drug is ionizable, the surface pH of the precipitating particles can differ from pHbulk because of the slow hydration process of CO2. In conclusion, pHbulk and β affected the precipitation of weakly acidic and basic drugs in BCB. As BCB is a physiological buffer in the small intestine, it should be used for precipitation studies of weakly acidic and basic drugs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信