Development of Novel Peptide-Based Radiotracers for Detecting FGL1 Expression in Tumors.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Yue Xu, Jinyuan Zhang, Donghui Pan, Junjie Yan, Chongyang Chen, Lizhen Wang, Xinyu Wang, Min Yang, Yuping Xu
{"title":"Development of Novel Peptide-Based Radiotracers for Detecting FGL1 Expression in Tumors.","authors":"Yue Xu, Jinyuan Zhang, Donghui Pan, Junjie Yan, Chongyang Chen, Lizhen Wang, Xinyu Wang, Min Yang, Yuping Xu","doi":"10.1021/acs.molpharmaceut.4c01293","DOIUrl":null,"url":null,"abstract":"<p><p>A novel immune checkpoint, FGL1, is a potentially viable target for tumor immunotherapy. The development of FGL1-targeted PET probes could provide significant insights into the immune system's status and the evaluation of treatment efficacy. A ClusPro 2.0 server was used to analyze the interaction between FGL1 and LAG3, and the candidate peptides were identified by using the Rosetta peptide derivate protocol. Three candidate peptides targeting FGL1, named FGLP21, FGLP22, and FGLP23, with a simulated affinity of -9.56, -8.55, and -8.71 kcal/mol, respectively, were identified. The peptides were readily conjugated with p-NCS-benzyl-NODA-GA, and the resulting compounds were successfully labeled with <sup>68</sup>Ga in approximately 70% yields and radiochemical purity greater than 95%. In vitro competitive cell-binding assay demonstrated that all probes bound to FGL1 with IC<sub>50</sub> ranging from 100 nM to 160 nM. Among the probes, PET imaging revealed that <sup>68</sup>Ga-NODA-FGLP21 exhibited the best tumor imaging performance in mice bearing FGL1 positive Huh7 tumor. At 60 min p.i., the tumor uptake of <sup>68</sup>Ga-NODA-FGLP21 was significantly higher than those of <sup>68</sup>Ga-NODA-FGLP22 and <sup>68</sup>Ga-NODA-FGLP23, respectively (2.51 ± 0.11% ID/g vs 1.00 ± 0.16% ID/g and 1.49 ± 0.05% ID/g). Simultaneously, the tumor-to-muscle uptake ratios of the former were also higher than those of the latter, respectively (19.40 ± 2.30 vs 9.65 ± 0.62 and 12.45 ± 0.72). In the presence of unlabeled FGLP21, the uptake of <sup>68</sup>Ga-NODA-FGLP21 in Huh7 xenograft decreased to 0.81 ± 0.09% ID/g at 60 min p.i., which is similar to that observed in the FGL1 negative U87 MG tumor (0.46 ± 0.03% ID/g). The results were consistent with the immunohistochemical analysis and ex vivo autoradiography. No significant radioactivity was accumulated in normal organs, except for kidneys. In summary, a preclinical study confirmed that the tracer <sup>68</sup>Ga-NODA-FGLP21 has the potential to specifically detect FGL1 expression in tumors with good contrast to the background.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01293","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel immune checkpoint, FGL1, is a potentially viable target for tumor immunotherapy. The development of FGL1-targeted PET probes could provide significant insights into the immune system's status and the evaluation of treatment efficacy. A ClusPro 2.0 server was used to analyze the interaction between FGL1 and LAG3, and the candidate peptides were identified by using the Rosetta peptide derivate protocol. Three candidate peptides targeting FGL1, named FGLP21, FGLP22, and FGLP23, with a simulated affinity of -9.56, -8.55, and -8.71 kcal/mol, respectively, were identified. The peptides were readily conjugated with p-NCS-benzyl-NODA-GA, and the resulting compounds were successfully labeled with 68Ga in approximately 70% yields and radiochemical purity greater than 95%. In vitro competitive cell-binding assay demonstrated that all probes bound to FGL1 with IC50 ranging from 100 nM to 160 nM. Among the probes, PET imaging revealed that 68Ga-NODA-FGLP21 exhibited the best tumor imaging performance in mice bearing FGL1 positive Huh7 tumor. At 60 min p.i., the tumor uptake of 68Ga-NODA-FGLP21 was significantly higher than those of 68Ga-NODA-FGLP22 and 68Ga-NODA-FGLP23, respectively (2.51 ± 0.11% ID/g vs 1.00 ± 0.16% ID/g and 1.49 ± 0.05% ID/g). Simultaneously, the tumor-to-muscle uptake ratios of the former were also higher than those of the latter, respectively (19.40 ± 2.30 vs 9.65 ± 0.62 and 12.45 ± 0.72). In the presence of unlabeled FGLP21, the uptake of 68Ga-NODA-FGLP21 in Huh7 xenograft decreased to 0.81 ± 0.09% ID/g at 60 min p.i., which is similar to that observed in the FGL1 negative U87 MG tumor (0.46 ± 0.03% ID/g). The results were consistent with the immunohistochemical analysis and ex vivo autoradiography. No significant radioactivity was accumulated in normal organs, except for kidneys. In summary, a preclinical study confirmed that the tracer 68Ga-NODA-FGLP21 has the potential to specifically detect FGL1 expression in tumors with good contrast to the background.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信