The first mile is the hardest: A deep learning-assisted matheuristic for container assignment in first-mile logistics

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Simon Emde, Ana Alina Tudoran
{"title":"The first mile is the hardest: A deep learning-assisted matheuristic for container assignment in first-mile logistics","authors":"Simon Emde, Ana Alina Tudoran","doi":"10.1016/j.ejor.2025.01.024","DOIUrl":null,"url":null,"abstract":"Urban logistics has been recognized as one of the most complex and expensive part of e-commerce supply chains. An increasing share of this complexity comes from the first mile, where shipments are initially picked up to be fed into the transportation network. First-mile pickup volumes have become fragmented due to the enormous growth of e-commerce marketplaces, which allow even small-size vendors access to the global market. These local vendors usually cannot palletize their own shipments but instead rely on containers provided by a logistics provider. From the logistics provider’s perspective, this situation poses the following novel problem: from a given pool of containers, how many containers of what size should each vendor receive when? It is neither desirable to supply too little container capacity because undersupply leads to shipments being loose-loaded, i.e., loaded individually without consolidation in a container; nor should the assigned containers be too large because oversupply wastes precious space. We demonstrate NP-hardness of the problem and develop a matheuristic, which uses a mathematical solver to assemble partial container assignments into complete solutions. The partial assignments are generated with the help of a deep neural network (DNN), trained on realistic data from a European e-commerce logistics provider. The deep learning-assisted matheuristic allows serving the same number of vendors with about 6% fewer routes than the rule of thumb used in practice due to better vehicle utilization. We also investigate the trade-off between loose-loaded shipments and space utilization and the effect on the routes of the collection vehicles.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"39 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.01.024","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Urban logistics has been recognized as one of the most complex and expensive part of e-commerce supply chains. An increasing share of this complexity comes from the first mile, where shipments are initially picked up to be fed into the transportation network. First-mile pickup volumes have become fragmented due to the enormous growth of e-commerce marketplaces, which allow even small-size vendors access to the global market. These local vendors usually cannot palletize their own shipments but instead rely on containers provided by a logistics provider. From the logistics provider’s perspective, this situation poses the following novel problem: from a given pool of containers, how many containers of what size should each vendor receive when? It is neither desirable to supply too little container capacity because undersupply leads to shipments being loose-loaded, i.e., loaded individually without consolidation in a container; nor should the assigned containers be too large because oversupply wastes precious space. We demonstrate NP-hardness of the problem and develop a matheuristic, which uses a mathematical solver to assemble partial container assignments into complete solutions. The partial assignments are generated with the help of a deep neural network (DNN), trained on realistic data from a European e-commerce logistics provider. The deep learning-assisted matheuristic allows serving the same number of vendors with about 6% fewer routes than the rule of thumb used in practice due to better vehicle utilization. We also investigate the trade-off between loose-loaded shipments and space utilization and the effect on the routes of the collection vehicles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信