Isogeometric methods for thermal analysis with spatially varying thermal conductivity under general boundary and other constraints

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Zulfiqar Ali , Weiyin Ma
{"title":"Isogeometric methods for thermal analysis with spatially varying thermal conductivity under general boundary and other constraints","authors":"Zulfiqar Ali ,&nbsp;Weiyin Ma","doi":"10.1016/j.enganabound.2025.106130","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents some results on steady-state thermal analysis with variable thermal conductivity under general boundary conditions and other internal constraints using isogeometric methods. Non-Uniform Rational B-splines (NURBS) serve as basis functions for representing both the geometry of the physical domains and the solution. While both isogeometric collocation method and Galarkin formulation are discussed for facilitating comparisons, the main emphasis of the presented work is on isogeometric collocation method (IGA-C) for thermal analysis. To obtain the final solution, the respective partial differential equation (PDE) is discretized in its strong form at a number of collocation sites in IGA-C, as opposed to Galerkin formulations that involve a costly process of numerical integration in building up the system equations. The proposed method on IGA-C for thermal analysis can be easily implemented due to the simplicity of IGA-C in setting up the system equations. In addition to general boundary conditions of the respective PDE, other arbitrary constraints can also be easily incorporated into the final system of equations for producing desired solutions. Numerical examples with different kinds of spatially varying thermal conductivity along with other additional constraints and heat sources are provided to demonstrate the effectiveness of the proposed methods. The results show that the proposed methods are capable of conveniently handling arbitrary boundary and other additional constraints when solving thermal PDEs and can produce stable and accurate solutions with expected convergence.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"172 ","pages":"Article 106130"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725000189","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents some results on steady-state thermal analysis with variable thermal conductivity under general boundary conditions and other internal constraints using isogeometric methods. Non-Uniform Rational B-splines (NURBS) serve as basis functions for representing both the geometry of the physical domains and the solution. While both isogeometric collocation method and Galarkin formulation are discussed for facilitating comparisons, the main emphasis of the presented work is on isogeometric collocation method (IGA-C) for thermal analysis. To obtain the final solution, the respective partial differential equation (PDE) is discretized in its strong form at a number of collocation sites in IGA-C, as opposed to Galerkin formulations that involve a costly process of numerical integration in building up the system equations. The proposed method on IGA-C for thermal analysis can be easily implemented due to the simplicity of IGA-C in setting up the system equations. In addition to general boundary conditions of the respective PDE, other arbitrary constraints can also be easily incorporated into the final system of equations for producing desired solutions. Numerical examples with different kinds of spatially varying thermal conductivity along with other additional constraints and heat sources are provided to demonstrate the effectiveness of the proposed methods. The results show that the proposed methods are capable of conveniently handling arbitrary boundary and other additional constraints when solving thermal PDEs and can produce stable and accurate solutions with expected convergence.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信