{"title":"A fully phased octoploid strawberry genome reveals the evolutionary dynamism of centromeric satellites","authors":"Xin Jin, Haiyuan Du, Maoxian Chen, Xu Zheng, Yiying He, Andan Zhu","doi":"10.1186/s13059-025-03482-0","DOIUrl":null,"url":null,"abstract":"We systematically examine the application of different phasing strategies to decrypt strawberry genome organization and produce a fully phased and accurate reference genome for Fragaria x ananassa cv. “EA78” (2n = 8x = 56). We identify 147 bp canonical centromeric repeats across 50 strawberry chromosomes and uncover the formation of six neocentromeres through centromere turnover. Our findings indicate strawberry genomes have diverged centromeric satellite arrays among chromosomes, particularly across homoeologs, while maintaining high sequence similarity between homologs. We trace the evolutionary dynamics of centromeric repeats and find substantial centromere size expansion in wild and cultivated octoploids compared to the diploid ancestor, F. vesca.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"122 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03482-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We systematically examine the application of different phasing strategies to decrypt strawberry genome organization and produce a fully phased and accurate reference genome for Fragaria x ananassa cv. “EA78” (2n = 8x = 56). We identify 147 bp canonical centromeric repeats across 50 strawberry chromosomes and uncover the formation of six neocentromeres through centromere turnover. Our findings indicate strawberry genomes have diverged centromeric satellite arrays among chromosomes, particularly across homoeologs, while maintaining high sequence similarity between homologs. We trace the evolutionary dynamics of centromeric repeats and find substantial centromere size expansion in wild and cultivated octoploids compared to the diploid ancestor, F. vesca.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.