Monte Carlo post-processing for radiation hydro simulations of accreting planets in protoplanetary disks

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Anton Krieger, Hubert Klahr, Julio David Melon Fuksman, Sebastian Wolf
{"title":"Monte Carlo post-processing for radiation hydro simulations of accreting planets in protoplanetary disks","authors":"Anton Krieger, Hubert Klahr, Julio David Melon Fuksman, Sebastian Wolf","doi":"10.1051/0004-6361/202451780","DOIUrl":null,"url":null,"abstract":"This paper is part of a series investigating the observational appearance of planets accreting from their nascent protoplanetary disk (PPD). We evaluate the differences between gas temperature distributions determined in our radiation hydrodynamical (RHD) simulations and those recalculated via post-processing with a Monte Carlo (MC) radiative transport (RT) scheme. Our MCRT simulations were performed for global PPD models, each composed of a local 3D high-resolution RHD model embedded in an axisymmetric global disk simulation. We report the level of agreement between the two approaches and point out several caveats that prevent a perfect match between the temperature distributions with our respective methods of choice. Overall, the level of agreement is high, with a typical discrepancy between the RHD and MCRT temperatures of the high-resolution region of only about 10 percent. The largest differences were found close to the disk photosphere, at the transition layer between optically dense and thin regions, as well as in the far-out regions of the PPD, occasionally exceeding values of 40 percent. We identify several reasons for these discrepancies, which are mostly related to general features of typical radiative transfer solvers used in hydrodynamical simulations (angle- and frequency-averaging and ignored scattering) and MCRT methods (ignored internal energy advection and compression and expansion work). This provides a clear pathway to reduce systematic temperature inaccuracies in future works. Based on MCRT simulations, we finally determined the expected error in flux estimates, both for the entire PPD and for planets accreting gas from their ambient disk, independently of the amount of gas piling up in the Hill sphere and the used model resolution.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"77 2 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451780","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is part of a series investigating the observational appearance of planets accreting from their nascent protoplanetary disk (PPD). We evaluate the differences between gas temperature distributions determined in our radiation hydrodynamical (RHD) simulations and those recalculated via post-processing with a Monte Carlo (MC) radiative transport (RT) scheme. Our MCRT simulations were performed for global PPD models, each composed of a local 3D high-resolution RHD model embedded in an axisymmetric global disk simulation. We report the level of agreement between the two approaches and point out several caveats that prevent a perfect match between the temperature distributions with our respective methods of choice. Overall, the level of agreement is high, with a typical discrepancy between the RHD and MCRT temperatures of the high-resolution region of only about 10 percent. The largest differences were found close to the disk photosphere, at the transition layer between optically dense and thin regions, as well as in the far-out regions of the PPD, occasionally exceeding values of 40 percent. We identify several reasons for these discrepancies, which are mostly related to general features of typical radiative transfer solvers used in hydrodynamical simulations (angle- and frequency-averaging and ignored scattering) and MCRT methods (ignored internal energy advection and compression and expansion work). This provides a clear pathway to reduce systematic temperature inaccuracies in future works. Based on MCRT simulations, we finally determined the expected error in flux estimates, both for the entire PPD and for planets accreting gas from their ambient disk, independently of the amount of gas piling up in the Hill sphere and the used model resolution.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信