Lukas Litzba, Eric Kleinherbers, Jürgen König, Ralf Schützhold, Nikodem Szpak
{"title":"Effective time-dependent temperature for fermionic master equations beyond the Markov and the secular approximations","authors":"Lukas Litzba, Eric Kleinherbers, Jürgen König, Ralf Schützhold, Nikodem Szpak","doi":"10.1103/physrevb.111.085103","DOIUrl":null,"url":null,"abstract":"We consider a fermionic quantum system exchanging particles with an environment at a fixed temperature and study its reduced evolution by means of a Redfield-I equation with time-dependent (non-Markovian) coefficients. We find that the description can be efficiently reduced to a standard-form Redfield-II equation, however, with a obeying a universal law. At early times, after the system and environment start in a product state, the appears to be very high, yet eventually it settles down towards the true environment value. In this way, we obtain a time-local master equation, offering high accuracy at all times and preserving the crucial properties of the density matrix. It includes non-Markovian relaxation processes beyond the secular approximation and time-averaging methods and can be further applied to various types of Gorini-Kossakowski-Sudarshan-Lindblad equations. We derive the theory from first principles and discuss its application using a simple example of a single quantum dot. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"16 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.085103","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a fermionic quantum system exchanging particles with an environment at a fixed temperature and study its reduced evolution by means of a Redfield-I equation with time-dependent (non-Markovian) coefficients. We find that the description can be efficiently reduced to a standard-form Redfield-II equation, however, with a obeying a universal law. At early times, after the system and environment start in a product state, the appears to be very high, yet eventually it settles down towards the true environment value. In this way, we obtain a time-local master equation, offering high accuracy at all times and preserving the crucial properties of the density matrix. It includes non-Markovian relaxation processes beyond the secular approximation and time-averaging methods and can be further applied to various types of Gorini-Kossakowski-Sudarshan-Lindblad equations. We derive the theory from first principles and discuss its application using a simple example of a single quantum dot. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter