{"title":"Saturable absorption in highly excited laser-irradiated silicon and its suppression at the surface","authors":"Shunsuke Yamada, Tomohito Otobe","doi":"10.1103/physrevb.111.075105","DOIUrl":null,"url":null,"abstract":"Nonlinear electronic excitation in laser-irradiated silicon at finite electron temperatures is numerically investigated by first-principles calculations based on the time-dependent density functional theory. In bulk silicon at finite temperatures under near-infrared laser irradiation, we found that the absorbed energy is saturated when using a certain laser intensity even with a few-cycle pulse. Although one-photon processes of conduction-to-conduction and valence-to-valence transitions are dominant at such a laser intensity, the Pauli blocking inhibits further one-photon transition. With higher intensities, multiphoton excitation across the bandgap overwhelms the one-photon excitation and the saturable absorption disappears. At the surface of finite-temperature silicon, the Pauli blocking is suppressed by the symmetry breaking and the absorbed energy is relatively enhanced from the energy of the saturable absorption in the bulk region. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"14 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.075105","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinear electronic excitation in laser-irradiated silicon at finite electron temperatures is numerically investigated by first-principles calculations based on the time-dependent density functional theory. In bulk silicon at finite temperatures under near-infrared laser irradiation, we found that the absorbed energy is saturated when using a certain laser intensity even with a few-cycle pulse. Although one-photon processes of conduction-to-conduction and valence-to-valence transitions are dominant at such a laser intensity, the Pauli blocking inhibits further one-photon transition. With higher intensities, multiphoton excitation across the bandgap overwhelms the one-photon excitation and the saturable absorption disappears. At the surface of finite-temperature silicon, the Pauli blocking is suppressed by the symmetry breaking and the absorbed energy is relatively enhanced from the energy of the saturable absorption in the bulk region. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter