Structural basis of differential gene expression at eQTLs loci from high-resolution ensemble models of 3D single-cell chromatin conformations.

Lin Du, Hammad Farooq, Pourya Delafrouz, Jie Liang
{"title":"Structural basis of differential gene expression at eQTLs loci from high-resolution ensemble models of 3D single-cell chromatin conformations.","authors":"Lin Du, Hammad Farooq, Pourya Delafrouz, Jie Liang","doi":"10.1093/bioinformatics/btaf050","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Techniques such as high-throughput chromosome conformation capture (Hi-C) have provided a wealth of information on nucleus organization and genome important for understanding gene expression regulation. Genome-Wide Association Studies have identified numerous loci associated with complex traits. Expression quantitative trait loci (eQTL) studies have further linked the genetic variants to alteration in expression levels of associated target genes across individuals. However, the functional roles of many eQTLs in noncoding regions remain unclear. Current joint analyses of Hi-C and eQTLs data lack advanced computational tools, limiting what can be learned from these data.</p><p><strong>Results: </strong>We developed a computational method for simultaneous analysis of Hi-C and eQTL data, capable of identifying a small set of nonrandom interactions from all Hi-C interactions. Using these nonrandom interactions, we reconstructed large ensembles (×105) of high-resolution single-cell 3D chromatin conformations with thorough sampling, accurately replicating Hi-C measurements. Our results revealed many-body interactions in chromatin conformation at the single-cell level within eQTL loci, providing a detailed view of how 3D chromatin structures form the physical foundation for gene regulation, including how genetic variants of eQTLs affect the expression of associated eGenes. Furthermore, our method can deconvolve chromatin heterogeneity and investigate the spatial associations of eQTLs and eGenes at subpopulation level, revealing their regulatory impacts on gene expression. Together, ensemble modeling of thoroughly sampled single-cell chromatin conformations combined with eQTL data, helps decipher how 3D chromatin structures provide the physical basis for gene regulation, expression control, and aid in understanding the overall structure-function relationships of genome organization.</p><p><strong>Availability and implementation: </strong>It is available at https://github.com/uic-liang-lab/3DChromFolding-eQTL-Loci.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Techniques such as high-throughput chromosome conformation capture (Hi-C) have provided a wealth of information on nucleus organization and genome important for understanding gene expression regulation. Genome-Wide Association Studies have identified numerous loci associated with complex traits. Expression quantitative trait loci (eQTL) studies have further linked the genetic variants to alteration in expression levels of associated target genes across individuals. However, the functional roles of many eQTLs in noncoding regions remain unclear. Current joint analyses of Hi-C and eQTLs data lack advanced computational tools, limiting what can be learned from these data.

Results: We developed a computational method for simultaneous analysis of Hi-C and eQTL data, capable of identifying a small set of nonrandom interactions from all Hi-C interactions. Using these nonrandom interactions, we reconstructed large ensembles (×105) of high-resolution single-cell 3D chromatin conformations with thorough sampling, accurately replicating Hi-C measurements. Our results revealed many-body interactions in chromatin conformation at the single-cell level within eQTL loci, providing a detailed view of how 3D chromatin structures form the physical foundation for gene regulation, including how genetic variants of eQTLs affect the expression of associated eGenes. Furthermore, our method can deconvolve chromatin heterogeneity and investigate the spatial associations of eQTLs and eGenes at subpopulation level, revealing their regulatory impacts on gene expression. Together, ensemble modeling of thoroughly sampled single-cell chromatin conformations combined with eQTL data, helps decipher how 3D chromatin structures provide the physical basis for gene regulation, expression control, and aid in understanding the overall structure-function relationships of genome organization.

Availability and implementation: It is available at https://github.com/uic-liang-lab/3DChromFolding-eQTL-Loci.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信