Unravelling intrinsically disordered and compositionally biased proteins in the cereal proteomes

IF 2 4区 生物学 Q2 BIOLOGY
Mouna Choura , Vladimir N. Uversky
{"title":"Unravelling intrinsically disordered and compositionally biased proteins in the cereal proteomes","authors":"Mouna Choura ,&nbsp;Vladimir N. Uversky","doi":"10.1016/j.biosystems.2025.105409","DOIUrl":null,"url":null,"abstract":"<div><div>Intrinsically disordered proteins (IDPs) play key biological functions despite lacking predetermined 3D structures. They are often compositionally biased and characterized by specific amino acid compositions. Here, we investigated protein intrinsic disorder in rice, wheat, barley, maize, sorghum, oat and rye proteomes. Then, we studied the distribution of compositionally biased proteins (CBs) in these species. The data showed that the contents of compositional biased proteins (CB), the average protein sizes, and biased sequence sizes were similar in the studied proteomes. Furthermore, the CB proteins were enriched in intrinsic disorder and IDPs were characterized by noticeable composition biases. In addition, the polar and the charged residues were the most abundant among the types of the biased residues. Gene Ontology analysis revealed that CB proteins in the studied species are mainly involved in binding, catalytic activity, and transcription regulation.</div><div>Altogether, our findings indicated that there is a noticeable conservation of intrinsically disordered and CB proteins in cereals. The evolutionary conservation of these features implies that cereals may use common cellular and regulatory mechanisms to adapt to various environmental constraints.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"248 ","pages":"Article 105409"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030326472500019X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsically disordered proteins (IDPs) play key biological functions despite lacking predetermined 3D structures. They are often compositionally biased and characterized by specific amino acid compositions. Here, we investigated protein intrinsic disorder in rice, wheat, barley, maize, sorghum, oat and rye proteomes. Then, we studied the distribution of compositionally biased proteins (CBs) in these species. The data showed that the contents of compositional biased proteins (CB), the average protein sizes, and biased sequence sizes were similar in the studied proteomes. Furthermore, the CB proteins were enriched in intrinsic disorder and IDPs were characterized by noticeable composition biases. In addition, the polar and the charged residues were the most abundant among the types of the biased residues. Gene Ontology analysis revealed that CB proteins in the studied species are mainly involved in binding, catalytic activity, and transcription regulation.
Altogether, our findings indicated that there is a noticeable conservation of intrinsically disordered and CB proteins in cereals. The evolutionary conservation of these features implies that cereals may use common cellular and regulatory mechanisms to adapt to various environmental constraints.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信