Cerebellar Oscillatory Patterns in Essential Tremor: Modulatory Effects of VIM-DBS.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Taylor J Bosch, Christopher Groth, Arturo I Espinoza, Vishal Bharmauria, Oliver Flouty, Arun Singh
{"title":"Cerebellar Oscillatory Patterns in Essential Tremor: Modulatory Effects of VIM-DBS.","authors":"Taylor J Bosch, Christopher Groth, Arturo I Espinoza, Vishal Bharmauria, Oliver Flouty, Arun Singh","doi":"10.1007/s12311-025-01787-1","DOIUrl":null,"url":null,"abstract":"<p><p>Essential tremor (ET) is a common movement disorder, and while ventral intermediate nucleus deep brain stimulation (VIM-DBS) is a well-established treatment, its precise mechanisms or modulatory effects, particularly in relation to cerebellar oscillations, remain unclear. In this study, we hypothesized that VIM-DBS would modulate cerebellar oscillatory activity across both resting and motor task conditions, reflecting its impact on cerebello-thalamic pathways. Ten patients diagnosed with ET participated in this study. We examined the effects of VIM-DBS on mid-cerebellar oscillations during resting-state and lower-limb pedaling motor tasks. Frequency analysis was conducted on the resting-state signal and time-frequency analysis was performed on motor task-related signals. We explored the modulatory effects of VIM-DBS on oscillatory activity across delta, theta, alpha, beta, and gamma frequency bands. We found that ON VIM-DBS increased mid-cerebellar relative theta power during resting-state conditions, with no significant changes in other frequency bands. During a pedaling motor task, VIM-DBS led to significant reductions in theta, alpha, and gamma power, highlighting the frequency-specific effects of stimulation. VIM-DBS also increased peak acceleration of leg movements during the pedaling task. Furthermore, VIM-DBS selectively increased mid-frontal relative theta and beta power as well as mid-occipital relative theta power during resting condition, suggesting localized mid-cerebellar modulation. Moreover, similarity analyses between mid-cerebellar and nearby mid-occipital signals revealed differences in coherence, phase coherence, and cross-spectrum phase coherence. Overall, these results support the role of VIM-DBS in modulating mid-cerebellar oscillations in ET and provide new insights into the neural mechanisms underlying DBS efficacy.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":"24 2","pages":"40"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-025-01787-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Essential tremor (ET) is a common movement disorder, and while ventral intermediate nucleus deep brain stimulation (VIM-DBS) is a well-established treatment, its precise mechanisms or modulatory effects, particularly in relation to cerebellar oscillations, remain unclear. In this study, we hypothesized that VIM-DBS would modulate cerebellar oscillatory activity across both resting and motor task conditions, reflecting its impact on cerebello-thalamic pathways. Ten patients diagnosed with ET participated in this study. We examined the effects of VIM-DBS on mid-cerebellar oscillations during resting-state and lower-limb pedaling motor tasks. Frequency analysis was conducted on the resting-state signal and time-frequency analysis was performed on motor task-related signals. We explored the modulatory effects of VIM-DBS on oscillatory activity across delta, theta, alpha, beta, and gamma frequency bands. We found that ON VIM-DBS increased mid-cerebellar relative theta power during resting-state conditions, with no significant changes in other frequency bands. During a pedaling motor task, VIM-DBS led to significant reductions in theta, alpha, and gamma power, highlighting the frequency-specific effects of stimulation. VIM-DBS also increased peak acceleration of leg movements during the pedaling task. Furthermore, VIM-DBS selectively increased mid-frontal relative theta and beta power as well as mid-occipital relative theta power during resting condition, suggesting localized mid-cerebellar modulation. Moreover, similarity analyses between mid-cerebellar and nearby mid-occipital signals revealed differences in coherence, phase coherence, and cross-spectrum phase coherence. Overall, these results support the role of VIM-DBS in modulating mid-cerebellar oscillations in ET and provide new insights into the neural mechanisms underlying DBS efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebellum
Cerebellum 医学-神经科学
CiteScore
6.40
自引率
14.30%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction. The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging. The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信