Machine learning-based prediction of antipsychotic efficacy from brain gray matter structure in drug-naive first-episode schizophrenia.

IF 3 Q2 PSYCHIATRY
Xiaodong Guo, Enpeng Zhou, Xianghe Wang, Bingjie Huang, Tianqi Gao, Chengcheng Pu, Xin Yu
{"title":"Machine learning-based prediction of antipsychotic efficacy from brain gray matter structure in drug-naive first-episode schizophrenia.","authors":"Xiaodong Guo, Enpeng Zhou, Xianghe Wang, Bingjie Huang, Tianqi Gao, Chengcheng Pu, Xin Yu","doi":"10.1038/s41537-025-00557-6","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting patient response to antipsychotic medication is a major challenge in schizophrenia treatment. This study investigates the predictive role of gray matter (GM) in short- and long-term treatment outcomes in drug-naive patients with first-episode schizophrenia (FES). A cohort of 104 drug-naive FES was recruited. Before initiating treatment, T1-weighted anatomical images were captured. The Positive and Negative Syndrome Scale and the Personal and Social Performance Scale were adopted to assess clinical symptoms and social function. At the 3-month follow-up, patients were categorized into remission and non-remission groups. At 1-year follow-up, patients were categorized into the rehabilitation and non-rehabilitation groups. Machine learning algorithms were applied to predict treatment outcomes based on GM volume, cortical thickness, and gyrification index, and the model performance was evaluated. Widespread regions, such as the superior temporal gyrus, middle frontal gyrus, supramarginal gyrus, the posterior central gyrus, anterior cingulate gyrus, and parahippocampal gyrus showed substantial predictive value for 3-month treatment efficacy (74.32% accuracy). The inferior frontal gyrus, anterior cingulate gyrus, and inferior occipital gyrus demonstrated significant predictive power for treatment outcome at 1-year follow-up (70.31% accuracy). We developed a machine learning model to predict individual responses to antipsychotic treatments, which could positively impact clinical treatment protocols for schizophrenia.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"11"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00557-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting patient response to antipsychotic medication is a major challenge in schizophrenia treatment. This study investigates the predictive role of gray matter (GM) in short- and long-term treatment outcomes in drug-naive patients with first-episode schizophrenia (FES). A cohort of 104 drug-naive FES was recruited. Before initiating treatment, T1-weighted anatomical images were captured. The Positive and Negative Syndrome Scale and the Personal and Social Performance Scale were adopted to assess clinical symptoms and social function. At the 3-month follow-up, patients were categorized into remission and non-remission groups. At 1-year follow-up, patients were categorized into the rehabilitation and non-rehabilitation groups. Machine learning algorithms were applied to predict treatment outcomes based on GM volume, cortical thickness, and gyrification index, and the model performance was evaluated. Widespread regions, such as the superior temporal gyrus, middle frontal gyrus, supramarginal gyrus, the posterior central gyrus, anterior cingulate gyrus, and parahippocampal gyrus showed substantial predictive value for 3-month treatment efficacy (74.32% accuracy). The inferior frontal gyrus, anterior cingulate gyrus, and inferior occipital gyrus demonstrated significant predictive power for treatment outcome at 1-year follow-up (70.31% accuracy). We developed a machine learning model to predict individual responses to antipsychotic treatments, which could positively impact clinical treatment protocols for schizophrenia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信