A deep learning model for QRS delineation in organized rhythms during in-hospital cardiac arrest

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jon Urteaga , Andoni Elola , Daniel Herráez , Anders Norvik , Eirik Unneland , Abhishek Bhardwaj , David Buckler , Benjamin S. Abella , Eirik Skogvoll , Elisabete Aramendi
{"title":"A deep learning model for QRS delineation in organized rhythms during in-hospital cardiac arrest","authors":"Jon Urteaga ,&nbsp;Andoni Elola ,&nbsp;Daniel Herráez ,&nbsp;Anders Norvik ,&nbsp;Eirik Unneland ,&nbsp;Abhishek Bhardwaj ,&nbsp;David Buckler ,&nbsp;Benjamin S. Abella ,&nbsp;Eirik Skogvoll ,&nbsp;Elisabete Aramendi","doi":"10.1016/j.ijmedinf.2025.105803","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cardiac arrest (CA) is the sudden cessation of heart function, typically resulting in loss of consciousness and cessation of pulse and breathing. The electrocardiogram (ECG) stands as an essential tool extensively utilized by clinicians, during CA treatment. Within the ECG, the QRS complex reflects the depolarization of the ventricles, yielding valuable perspectives on cardiac health and potential irregularities. The delineation of QRS complexes is crucial for obtaining that information, but classical algorithms have not been tested with CA rhythms.</div></div><div><h3>Objective</h3><div>This research aims to introduce a new deep learning-based model for accurately delineating QRS complexes in patients experiencing organized rhythms during in-hospital CA.</div></div><div><h3>Material and Methods</h3><div>Two databases have been employed, one comprising 332 episodes of in-hospital CA (151815 QRS complexes) and another consisting of 105 hemodynamically stable patients (112497 QRS complexes). The method comprises three stages: signal preprocessing for noise removal, windowing and sample classification with a U-Net model, and finally, the segmented windows are merged to complete the process.</div></div><div><h3>Results</h3><div>The proposed method exhibited mean (standard deviation) F1 score/Sensitivity/Specificity/intersection over union values of 97.03(8.28)/ 97.69(11.38)/96.47(9.92)/79.09(15.78), and a 8.56(11.62)<!--> <figure><img></figure> error for <span><math><mi>QR</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>on</mi></mrow></msub></math></span>, and 25.11(25.86)<!--> <figure><img></figure> for <span><math><mi>QR</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>off</mi></mrow></msub></math></span> instant delineation.</div></div><div><h3>Conclusions</h3><div>A precise delineator like this could support clinical practice by quantifying QRS features to enhance diagnostic accuracy and optimize treatment strategies.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"196 ","pages":"Article 105803"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000206","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Cardiac arrest (CA) is the sudden cessation of heart function, typically resulting in loss of consciousness and cessation of pulse and breathing. The electrocardiogram (ECG) stands as an essential tool extensively utilized by clinicians, during CA treatment. Within the ECG, the QRS complex reflects the depolarization of the ventricles, yielding valuable perspectives on cardiac health and potential irregularities. The delineation of QRS complexes is crucial for obtaining that information, but classical algorithms have not been tested with CA rhythms.

Objective

This research aims to introduce a new deep learning-based model for accurately delineating QRS complexes in patients experiencing organized rhythms during in-hospital CA.

Material and Methods

Two databases have been employed, one comprising 332 episodes of in-hospital CA (151815 QRS complexes) and another consisting of 105 hemodynamically stable patients (112497 QRS complexes). The method comprises three stages: signal preprocessing for noise removal, windowing and sample classification with a U-Net model, and finally, the segmented windows are merged to complete the process.

Results

The proposed method exhibited mean (standard deviation) F1 score/Sensitivity/Specificity/intersection over union values of 97.03(8.28)/ 97.69(11.38)/96.47(9.92)/79.09(15.78), and a 8.56(11.62) 
error for QRSon, and 25.11(25.86) 
for QRSoff instant delineation.

Conclusions

A precise delineator like this could support clinical practice by quantifying QRS features to enhance diagnostic accuracy and optimize treatment strategies.

Abstract Image

院内心脏骤停期间有组织节律QRS描述的深度学习模型。
背景:心脏骤停(CA)是心脏功能的突然停止,通常导致意识丧失、脉搏和呼吸停止。心电图(ECG)是临床医生在CA治疗过程中广泛使用的重要工具。在心电图中,QRS复合体反映了心室的去极化,为心脏健康和潜在的不规则性提供了有价值的视角。QRS复合体的描述对于获得这些信息至关重要,但经典算法尚未对CA节律进行过测试。目的:本研究旨在介绍一种新的基于深度学习的模型,用于准确描述有组织节律的住院CA患者的QRS复合物。材料和方法:采用两个数据库,一个包含332例住院CA(151815个QRS复合物),另一个包含105例血流动力学稳定的患者(112497个QRS复合物)。该方法包括三个阶段:信号预处理去噪、窗口化和U-Net模型的样本分类,最后将分割的窗口合并完成整个过程。结果:所提出的方法在联合值上的F1评分/灵敏度/特异性/交叉点均值(标准差)为97.03(8.28)/ 97.69(11.38)/96.47(9.92)/79.09(15.78),QRSon的误差为8.56(11.62),QRSoff的误差为25.11(25.86)。结论:像这样的精确描述可以通过量化QRS特征来支持临床实践,以提高诊断准确性和优化治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信